反平面电弹性偏折裂纹的一个解析解

侯密山, 徐国强, 胡玉林

侯密山, 徐国强, 胡玉林. 反平面电弹性偏折裂纹的一个解析解[J]. 工程力学, 2013, 30(9): 76-80. DOI: 10.6052/j.issn.1000-4750.2012.05.0319
引用本文: 侯密山, 徐国强, 胡玉林. 反平面电弹性偏折裂纹的一个解析解[J]. 工程力学, 2013, 30(9): 76-80. DOI: 10.6052/j.issn.1000-4750.2012.05.0319
HOU Mi-shan, XU Guo-qiang, HU Yu-lin. AN ANALYTICAL SOLUTION FOR PROBLEM OF ANTIPLANE KINK CRACKS IN PIEZOELECTRIC MATERIALS[J]. Engineering Mechanics, 2013, 30(9): 76-80. DOI: 10.6052/j.issn.1000-4750.2012.05.0319
Citation: HOU Mi-shan, XU Guo-qiang, HU Yu-lin. AN ANALYTICAL SOLUTION FOR PROBLEM OF ANTIPLANE KINK CRACKS IN PIEZOELECTRIC MATERIALS[J]. Engineering Mechanics, 2013, 30(9): 76-80. DOI: 10.6052/j.issn.1000-4750.2012.05.0319

反平面电弹性偏折裂纹的一个解析解

基金项目: 山东省自然科学基金项目(Y2007A31)
详细信息
    作者简介:

    徐国强(1982―),男,山东人,实验师,学士,从事材料宏微观力学性能方向的研究(E-mail:xuguoqiang@upc.edu.cn);胡玉林(1957―),男,山东人,教授,硕士,从事结构强度与可靠性方向的研究(E-mail:jgxxb@upc.edu.cn).

    通讯作者:

    侯密山(1952―),男,黑龙江人,教授,硕士,主要从事固体力学方面的研究与教学工作(E-mail:houms@upc.edu.cn).

  • 中图分类号: TB34

AN ANALYTICAL SOLUTION FOR PROBLEM OF ANTIPLANE KINK CRACKS IN PIEZOELECTRIC MATERIALS

  • 摘要: 该文用复变函数方法分析了压电材料反平面偏折裂纹问题,给出了问题的解析解,讨论了分支裂纹尖端的渐进场与奇异性。利用分支裂纹尖端扩展的能量释放率与[积分,研究了主支裂纹扩展方向,结果表明:压电材料Ⅲ型裂纹扩展时的分支角[,即裂纹扩展沿着主支裂纹的延长线方向。在理论上证明了前期对压电材料反平面裂纹的直线扩展假设及其相应结果的正确性。
    Abstract: Abstract: The problem of anti-place kink cracks in the piezoelectric materials is analyzed by using complex functions. The coupled filed and intensity factors of the branching crack tip are also studied. Using energy release rate and Jintegral for the branching crack tip,the main crack growth path is considered. Research has shown that the deflection angle of anti-place crack propagation in the piezoelectric materials is zero,in other words . It is proved theoretically that the assumptions and corresponding conclusions of piezoelectric materials plane crack-growth by a straight line are correct in earlier period.
  • [1] Pak Y E. Crack extension force in a piezoelectric material [J]. Journal of Applied Mechanics, 1990, 57: 647―653.
    [2] Chen T. The rotation of a rigid ellipsoidal inclusion embedded in an piezoelectric medium [J]. Int. J. Solids Structure, 1993, 30: 1983―1995.
    [3] Suo Z, Kuo C M, Barnett D M, Willims J R., Fracture mechanics for piezoelectric ceramics [J]. J Mech Phys Solids, 1992, 40: 739―765.
    [4] Hou Mishan, Qian Xiuqing, Bian Wenfen. Energy release rate and bifurcation angles of piezoelectric materials with antiplane moving crack [J]. International Journal of Fracture, 2001, 107(4): 297―306.
    [5] 侯密山, 杨秀娟. 集中载荷作用下的不同压电材料反平面应变状态的共圆弧界面裂纹问题[J]. 工程力学, 1998, 15(1): 110―114.
    Hou Mishan, Yang Xiujuan. Antiplane strain problems of circular arc cracks between bonded dissimilar piezoelectric materials under concentrated forces [J]. Engineering Mechanics, 1998, 15(1): 110―114. (in Chinese).
    [6] 刘新民, 侯密山. 压电材料渗透型反平面界面裂纹的奇异因子[J]. 工程力学, 2000, 17(2): 18―22.
    LIU Xinmin, Hou Mishan. Intensity factors of electrically permeable interfacial cracks of antiplane strain problems in bonded dissimilar piezoelectric materials [J]. Engineering Mechanics, 2000, 17(2): 18―22. (in Chinese).
    [7] MeHenry K D, Koepke B G. Electric field effects on subcritical crack growth in PZT [J]. Frac Mech Ceram., 1983, 5: 337―352.
    [8] Park S B, Sun C T. Fracture criteria for piezoelectric ceramics [J]. Journal of the American Ceramic Society, 1995, 78: 1475―1480.
    [9] Lo K K. Analysis of branched cracks [J]. Journal of Applied Mechanics, 1978, 45: 797―802.
    [10] Zhu T, Yang W. Kink crack growth in ferroelectrics [J]. International Journal of Solids and Structures, 1999, 36: 5013―5027.
    [11] 黄克智, 余寿文, 华达浩. 关于全复合型能量释放率准则[J]. 固体力学学报, 1983, 3: 313―321.
    Huang Kezhi, Yu Shouwen, Hua Dahao. On the maximum energy release rate fracture criterion for combined mode-Ⅰ-Ⅱ-Ⅲ cracks [J]. Acta Mechanica Solida Sinica, 1983, 3: 313―321. (in Chinese).
    [12] Hussain M A, Pu S L, Underwood J H. Strain energy release rate for a crack under combined mode I and mode II [M]. USA: Defense Technical Information Center, 1973: 2―28.
    [13] Sih G C. Stress distribution near internal crack tips for longitudinal shear problems [J]. Journal of Applied Mechanics, 1965, 32(1): 51―58.
计量
  • 文章访问数:  304
  • HTML全文浏览量:  21
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-24
  • 修回日期:  2013-09-24
  • 刊出日期:  2013-09-24

目录

    /

    返回文章
    返回