钢管混凝土拱桥台阵试验研究:场地条件的影响

闫维明, 李晰, 陈彦江, 李勇, 顾大鹏

闫维明, 李晰, 陈彦江, 李勇, 顾大鹏. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学, 2013, 30(6): 116-123. DOI: 10.6052/j.issn.1000-4750.2012.03.0178
引用本文: 闫维明, 李晰, 陈彦江, 李勇, 顾大鹏. 钢管混凝土拱桥台阵试验研究:场地条件的影响[J]. 工程力学, 2013, 30(6): 116-123. DOI: 10.6052/j.issn.1000-4750.2012.03.0178
YAN Wei-ming, LI Xi, CHEN Yan-jiang, LI Yong, GU Da-peng. SHAKING TABLE RESEARCH ON A CFST ARCH BRIDGE MODEL: EFFECT OF SITE CONDITION[J]. Engineering Mechanics, 2013, 30(6): 116-123. DOI: 10.6052/j.issn.1000-4750.2012.03.0178
Citation: YAN Wei-ming, LI Xi, CHEN Yan-jiang, LI Yong, GU Da-peng. SHAKING TABLE RESEARCH ON A CFST ARCH BRIDGE MODEL: EFFECT OF SITE CONDITION[J]. Engineering Mechanics, 2013, 30(6): 116-123. DOI: 10.6052/j.issn.1000-4750.2012.03.0178

钢管混凝土拱桥台阵试验研究:场地条件的影响

基金项目: 国家自然科学基金项目(90715032,50978009,51008102);北京市教育委员会科技计划重点项目(KZ200910005002)
详细信息
  • 中图分类号: TU317+.1; TU352.1

SHAKING TABLE RESEARCH ON A CFST ARCH BRIDGE MODEL: EFFECT OF SITE CONDITION

  • 摘要: 为了研究不同场地条件对钢管混凝土拱桥地震响应的影响规律,以某钢管混凝土拱桥为原型,设计制作1/16缩尺比例模型,依据NEHRP场地分类标准,选取符合不同场地条件的ChiChi地震波,利用多子台积木式振动台台阵系统,完成了纵向、横向、竖向、横向+纵向和横向+竖向一致地震动输入的对比试验。研究结果表明:场地条件对此类钢管混凝土拱桥响应的影响较为显著,结构响应由A类至E类场地逐类递增,结构在E类场地下的响应为A类场地的1.6倍~4.1倍;相对于水平向加速度响应,拱顶竖向加速度响应对场地条件更为敏感,场地条件对竖向加速度的放大作用要高于水平向加速度,在确定设计加速度反应谱时,如果竖向设计加速度反应谱与水平设计加速度反应谱采用相同的场地系数会使竖向加速度反应谱最大值偏小。
    Abstract: To study the effects induced by varying sites on seismic responses of a CFST arch bridge, an actual CFST based scaled (1∶16) model has been employed to conduct the shaking table test. Based on the local sites classification of NEHRP, several real recorded ground motions at different site conditions from the ChiChi Earthquake are selected as the ground motion input, and then a comparative test on the multi-shaking table array system was carried out. During this experiment, the structure subjected to the uniform excitation are investigated, by considering the cases of longitudinal, transverse and vertical ground motion input, as well as the combination of transverse and longitudinal input and transverse and vertical input. This study reveals that local site condition has a significant influence on the seismic response of the CFST arch bridge. The seismic response increases with the site classification from A to E, and the seismic response in the E-class site is around 1.6~4.1 times high than that in the A-class. The vertical acceleration response of a vault is much more sensitive to site condition than the horizontal. As a result, the peak value of vertical design spectrum will be smaller if the same site coefficient is used with the horizontal one.
  • [1] 胡聿贤, 孙平善, 章在墉, 等. 场地条件对震害和地震动的影响[J]. 地震工程与工程振动, 1980, 1(1): 41―54.
    [2]  Hu Yuxian, Sun Pingshan, Zhang Zaiyong, et al. Effects of site conditions on earthquake damage and ground motion [J]. Earthquake Engineering and Engineering Vibration, 1980, 1(1): 41―54. (in Chinese)
    [3]  [2] 薄景山, 李秀领, 李山有. 场地条件对地震动影响研究的若干进展[J]. 世界地震工程, 2003, 19(2): 11―15. 
    [4] Bo Jingshan, Li Xiuling, Li Shanyou. Some progress of study on the effect of site conditions on ground motion [J]. World Information on Earthquake Engineering, 2003, 19(2): 11―15. (in Chinese)
    [5]  [3] Richter C F. Elementary seismology [M]. San-Francisco, 1958.
    [6]  [4] Xiong Feng, Sashi K Kunnath, Liu Haowu. Seismic behavior of concrete filled steel tubular arch structures [J]. Earthquake Engineering and Engineering Vibration, 2005, 4(1): 107―115.
    [7]  [5] Su Liang, Dong Shilin, Kato Shiro. Seismic design for steel trussed arch to multi-support excitations [J]. Journal of Constructional Steel Research, 2006, 63(6): 725―734.
    [8]  [6] Harichandran Ronald S, Hawwari Ahmad, Sweidan Basheer N. Response of long-span bridges to spatially varying ground motion [J]. Journal of Structural Engineering, 1996, 12(5): 478―484.
    [9]  [7] 樊珂, 闫维明, 李振宝. 行波激励对千岛湖大桥地震响应的影响[J]. 工程抗震与加固改造, 2008, 30(1): 69―77.
    [10]  Fan Ke, Yan Weiming, Li Zhenbao. The effect of traveling wave on seismic response of Qiandaohu bridge [J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(1): 69―77. (in Chinese)
    [11]  [8] 王浩, 乔建东, 郭刚, 等. 茅草街大桥主桥的地震反应分析[J]. 防灾减灾工程学报, 2003, 23(3): 62―65. 
    [12] Wang Hao, Qiao Jiandong, Guo Gang, et al. Seismic response spectrum analysis of Maocaojie bridge [J]. Journal of Disaster Prevention and Mitigation Engineering, 2003, 23(3): 62―65. (in Chinese)
    [13]  [9] 杜思义, 陈淮, 王宝聚. 某下承式钢管混凝土拱桥抗震分析[J]. 郑州大学学报(理学版), 2007, 39(3): 158―162. 
    [14] Du Siyi, Chen Huai, Wang Baoju. Anti-seismic analysis of a through concrete-filled steel tubular arch bridge [J]. Journal of Zhengzhou University (Natural Science Edition), 2007, 39(3): 158―162. (in Chinese)
    [15]  [10] 童申家, 吴星, 李纲. 大跨钢管混凝土拱桥地震行波效应分析[J]. 桥梁建设, 2008(2): 27―30. 
    [16] Tong Shenjia, Wu Xing, Li Gang. Analysis of seismic traveling wave effect on long span concrete-filled steel tube arch bridges [J]. Bridge Construction, 2008(2): 27―30. (in Chinese)
    [17]  [11] 王天稳. 土木工程结构试验[M]. 武汉: 武汉理工大学出版社, 2006: 25―26. 
    [18] Wang Tianwen. Structural testing of civil engineering [M]. Wuhan: Wuhan University of Technology Press, 2006: 25―26. (in Chinese)
    [19]  [12] Ibrahim S R, Mikulcik E C. A method for the direct identification of vibration parameters from the free response [J]. The Shock and Vibration, 1977, 47(4): 183―198.
    [20]  [13] 王卓, 闫维明, 何浩祥. 两种结构模态测试方法的比较及试验分析[J]. 四川建筑科学研究, 2009, 35(1): 23―26. 
    [21] Wang Zhuo, Yan Weiming, He Haoxiang. Comparison and test analysis of two methods of structural model testing [J]. Sichuan Building Science, 2009, 35(1): 23―26. (in Chinese)
    [22]  [14] Ibrahim S R, Mikulcik E C. A method for the direct identification of vibration parameters from the free response [J]. The Shock and Vibration, 1977, 47(4): 183―198.
    [23]  [15] FEMA P-750/2009, NEHRP recommended seismic provisions for new buildings and other structures [S]. Washington, D.C.: Building Seismic Safety Council, 2009.
计量
  • 文章访问数:  692
  • HTML全文浏览量:  23
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-15
  • 刊出日期:  2013-06-24

目录

    /

    返回文章
    返回