微型三角楔超声速绕流特性的研究

薛大文, 陈志华, 孙晓晖, 陈耀慧

薛大文, 陈志华, 孙晓晖, 陈耀慧. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4): 455-460. DOI: 10.6052/j.issn.1000-4750.2011.12.0853
引用本文: 薛大文, 陈志华, 孙晓晖, 陈耀慧. 微型三角楔超声速绕流特性的研究[J]. 工程力学, 2013, 30(4): 455-460. DOI: 10.6052/j.issn.1000-4750.2011.12.0853
XUE Da-wen, CHEN Zhi-hua, SUN Xiao-hui, CHEN Yao-hui. INVESTIGATIONS ON THE FLOW CHARACTERISTICS OF SUPERSONIC FLOW PAST A MICRO-RAMP[J]. Engineering Mechanics, 2013, 30(4): 455-460. DOI: 10.6052/j.issn.1000-4750.2011.12.0853
Citation: XUE Da-wen, CHEN Zhi-hua, SUN Xiao-hui, CHEN Yao-hui. INVESTIGATIONS ON THE FLOW CHARACTERISTICS OF SUPERSONIC FLOW PAST A MICRO-RAMP[J]. Engineering Mechanics, 2013, 30(4): 455-460. DOI: 10.6052/j.issn.1000-4750.2011.12.0853

微型三角楔超声速绕流特性的研究

基金项目: 重点实验室基金项目(9140C300206110C3001)
详细信息
    作者简介:

    薛大文(1986―),男,江苏扬州人,博士生,从事超声速数值模拟研究(E-mail: dawenjs@163.com); 孙晓晖(1985―),男,山东威海人,博士生,从事超声速推进技术研究(E-mail: huizi123717@163.com);
    陈耀慧(1979―),男,广西北海人,讲师,博士后,从事流体控制方面的研究(E-mail: yhchen@njust.edu.cn).

    通讯作者:

    陈志华(1967―),男,湖南益阳人,教授,双博士,博导,主要从事计算流体力学、燃烧推进、爆轰等方面的研究 (E-mail: chenzh@mail.njust.edu.cn).

  • 中图分类号: O357.4+1

INVESTIGATIONS ON THE FLOW CHARACTERISTICS OF SUPERSONIC FLOW PAST A MICRO-RAMP

  • 摘要: 基于大涡模拟(LES)方法,结合WENO格式与自适应网格加密(AMR)技术及沉浸边界法(IBM),对来流马赫数为Ma =2.5条件下的平板上微型三角楔绕流流场进行了数值模拟。数值模拟表明微型三角楔涡流发生器可以显著改变超声速流体边界层结构。计算结果清晰地显示了三角楔上游分离区的流场结构和下游各涡的流态,同时计算表明,微楔对边界层控制过程中,其下游的流向涡对与涡环结构都起了重要作用,并对其作用过程进行了讨论。数值计算与相关实验结果相符,且提供了流场的重要细节,揭示了微楔的控制机理,可为超声速边界层控制研究提供重要支持。
    Abstract: Based on the large eddy simulation, combined with WENO scheme, the adaptive mesh refinement (AMR) technique and immersed boundary method (IBM), the supersonic flow (Ma=2.5) past a micro-ramp has been simulated. Our numerical results reveal that the wall-mounted micro-ramp can modify the flow structure of a boundary layer obviously. The detail flow structures and the vortex evolution around the separation region and the wake have also been visualized clearly. Meanwhile, it also indicates that the streamwise vortices and the vortex rings downstream the micro-ramp have the same important effects in controlling of the boundary layer separation, and that the interactions among themselves have been discussed. Our calculated results are in a good agreement with corresponding experimental data, provide an important detail for flow structures, and reveal the mechanism of boundary layer control, which can provide an important guidance for the related research.
  • [1] Heiser W H, Pratt D T. Hypersonic air breathing propulsion [M]. Washington, D C:American Institute of Aeronautics and Astronautics, 1994: 3―26.
    [2] Taylor H D. The elimination of diffuser separation by vortex generators [R]. United Aircraft Corporation Report No. R-4012-3, June, 1947.
    [3] Bragg M B, Gregorek G M. Experimental study of airfoil performance with vortex generators [J]. Journal of Aircraft, 1987,24(5):305―309.
    [4] Calarese W, Crisler W P, Gustsfson G L. Afterbody drag reduction by vortex generators [R]. Reno, N V:AmericanInstitute of Aeronautics and Astronautics, 1985.
    [5] Rao D M, Kariya T T. Boundary layer submerged vortex generators for separation control an exploratory study [R]. Cincinati, OH, American Institute of Aeronautics and Astronautics, 1988.
    [6] McCormick D C. Shock-boundary layer interaction control with low-profile vortex generators and passive cavity [R]. Reno, N V:AmericanInstitute of Aeronautics and Astronautics, 1992.
    [7] Kim J Q, Ryou H S, Jeong J Y,et al. Numerical simulation of 3-D turbulent flow with imbedded longitudinal vortex [J]. Computational Fluid Dynamics Journal, 1996,4(4):473―488.
    [8] Yang J S, Seo J K, Lee K B. A number analysis on flow field and heat transfer by interaction between a pair of vortices in rectangular channel flow [J]. Current Applied Physics, 2001,1(4/5):393―405.
    [9] Lee S, Loth E, Wang C. LES of supersonic turbulent boundary layers with μVGs [R]. Miami, Florida, American Institute of Aeronautics and Astronautics, 2007.
    [10] Babinsky H, Li Y, C. W. Pitt Ford. Microramp control of supersonic oblique shock-wave/boundary layer interactions [J]. American Institute of Aeronautics and Astronautics Journal, 2009,47(3):668―675.
    [11] Li Qin, Liu Chaoqun. LES for supersonic ramp control flow using MVG at Ma =2. 5 and Reθ, =1440 [R]. Orlando, Florida, American Institute of Aeronautics and Astronautics, 2010.
    [12] Kim J, Kim D, Choi H. An immersed boundary finite volume method for simulations of flow in complex geometries [J]. Journal of Computational Physics, 2001,171:132―150.
    [13] Berger M, Colella P. Local adaptive mesh refinement for shock hydrodynamics[J]. Journal of Computer &Physics, 1988,82:64―84.
计量
  • 文章访问数:  1284
  • HTML全文浏览量:  7
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-24
  • 修回日期:  2013-04-24
  • 刊出日期:  2013-04-24

目录

    /

    返回文章
    返回