考虑中间主应力和剪胀特性的深埋圆巷弹塑性应力位移解

刘志钦, 余东明

刘志钦, 余东明. 考虑中间主应力和剪胀特性的深埋圆巷弹塑性应力位移解[J]. 工程力学, 2012, 29(8): 289-296. DOI: 10.6052/j.issn.1000-4750.2011.08.0511
引用本文: 刘志钦, 余东明. 考虑中间主应力和剪胀特性的深埋圆巷弹塑性应力位移解[J]. 工程力学, 2012, 29(8): 289-296. DOI: 10.6052/j.issn.1000-4750.2011.08.0511
LIU Zhi-qin, YU Dong-ming. ELASTOPLASTIC STRESS AND DISPLACEMENT ANALYTICAL SOLUTIONS TO DEEP-BURIED CIRCULAR TUNNELS CONSIDERING INTERMEDIATE PRINCIPAL STRESS AND DILATANCY[J]. Engineering Mechanics, 2012, 29(8): 289-296. DOI: 10.6052/j.issn.1000-4750.2011.08.0511
Citation: LIU Zhi-qin, YU Dong-ming. ELASTOPLASTIC STRESS AND DISPLACEMENT ANALYTICAL SOLUTIONS TO DEEP-BURIED CIRCULAR TUNNELS CONSIDERING INTERMEDIATE PRINCIPAL STRESS AND DILATANCY[J]. Engineering Mechanics, 2012, 29(8): 289-296. DOI: 10.6052/j.issn.1000-4750.2011.08.0511

考虑中间主应力和剪胀特性的深埋圆巷弹塑性应力位移解

基金项目: 河南省科技攻关重点项目(112102210361)
详细信息
    作者简介:

    刘志钦(1968―),女,河南平顶山人,副教授,博士,从事工程力学、结构工程的教学与研究(E-mail: lzq68@hncj.edu.cn).

    通讯作者:

    余东明(1980―),男,安徽六安人,博士,从事公路路基工程研究(E-mail: yudm80@163.com).

  • 中图分类号: U451+.2

ELASTOPLASTIC STRESS AND DISPLACEMENT ANALYTICAL SOLUTIONS TO DEEP-BURIED CIRCULAR TUNNELS CONSIDERING INTERMEDIATE PRINCIPAL STRESS AND DILATANCY

  • 摘要: 平面应变条件下的深埋圆形巷道问题一般忽略中间主应力的影响,但这会与塑性区围岩的实际情况产生较大差异。为了充分考虑中间主应力对深埋圆形巷道的影响,基于平面应变假设与非关联流动法则将Mohr-Coulomb准则精确匹配为Drucker-Prager准则,在此基础上推导了考虑剪胀特性的理想弹塑性材料在塑性阶段的中间主应力表达式,中间主应力与剪胀角密切相关;根据所得的中间主应力表达式结合非关联流动法则,不引入任何假设,得出深埋圆巷塑性区由于剪胀角而发生体变的关系式;进一步推导了考虑中间主应力和剪胀特性的深埋圆形巷道塑性区应力位移解析式,其中径向应力、切向应力及塑性区半径的表达式与卡斯特奈(Kastner)解完全一致,但卡斯特奈(Kastner)解无法得出中间主应力,而新的位移解析式则与以往的文献完全不同;经与以往文献的位移理论解比较分析知,新的位移解答更加合理。因此考虑中间主应力和剪胀特性的解答为深埋圆形巷道的计算与设计提供一定的理论基础。
    Abstract: The influence of intermediate principal stress was usually ignored for the problem of a deep-buried circular tunnel under plane strain condition, which would lead to significant difference from the actual conditions of surrounding rocks in plastic areas. To consider the influence of intermediate principal stress on deep-buried circular tunnels, plane strain hypothesis and non-associated flow rule were adopted while Mohr-Coulomb strength criterion was precisely matched to Drucker-Prager strength criterion. The analytical expression of intermediate principal stress in plastic state for the perfect elastoplastic material with dilatancy was derived from Drucker-Prager strength criterion. The intermediate principal stress was closely relative to the dilation angle. By combining the analytical expression and non-associated flow rule, any other hypothesis need not to be introduced and the expression on volume dilatancy due to the dilation angle in plastic area could be obtained. Furthermore, the analytical expressions of the displacement and stress in plastic area for a deep-buried circular tunnel considering intermediate principal stress and dilatancy can also be obtained. In the expressions, the radial stress, the circumferential stress and the radius of plastic area have the same form as the solutions of Kastner. But the form of intermediate principal could not be given in solutions of Kastner and the new analytical expression of the displacement was entirely different from other literatures. Compared with the theoretic solutions of the displacement in other literatures, it shows the new solutions of the displacement are more reasonable. The solutions considering intermediate principal stress and dilatancy could therefore provide reasonable theoretic basis for the calculation and design of a deep-buried circular tunnel.
  • [1]  Jaeger J C, Cook N G W. Fundamentals of rock mechanics [M]. London: Chapman and Hall, 1978: 217―221.
    [2]  于学馥, 郑颖人, 刘怀恒, 等. 地下工程围岩稳定分析[M]. 北京: 煤炭工业出版社, 1983: 217―221.
     Yu Xuefu, Zheng Yingren, Liu Huaiheng, et al. Stability analysis of the surrounding rock mass in underground engineering [M]. Beijing: China Coal Industry Publishing House, 1983: 217―221. (in Chinese)
    [3]  陈立伟, 彭建兵, 范文, 等. 基于统一强度理论的非均匀应力场圆形巷道围岩塑性区分析[J]. 煤炭学报, 2007, 32(1): 20―23.
     Chen Liwei, Peng Jianbing, Fan Wen, et al. Analysis of surrounding rock mass plastic zone of round tunnel under non-uniform stress field based on the unified strength theory [J]. Journal of China Coal Society, 2007, 32(1): 20―23. (in Chinese)
    [4]  徐德欣. 岩石中间主应力效应的理论分析[J]. 山地学报, 2003, 21(2): 246―251.
     Xu Dexin. The theoretical analysis of the mid-principal stress of rock [J]. Journal of Mountain Science, 2003, 21(2): 246―251. (in Chinese)
    [5]  刘夕才, 林韵梅. 软岩巷道弹塑性变形的理论分析[J]. 岩土力学, 1994, 15(2): 27―36.
     Liu Xicai, Lin Yunmei. Theoretic analysis of elastoplastic deformation for the tunnel in soft rocks [J]. Rock and Soil Mechanics, 1994, 15(2): 27―36. (in Chinese)
    [6]  刘夕才, 林韵梅. 软岩扩容性对巷道围岩特性曲线的影响[J]. 煤炭学报, 1996, 21(6): 596―601.
     Liu Xicai, Lin Yunmei. Effect of dilatancy of soft rocks on rock characteristic curves of tunnels [J]. Journal of China Coal Society, 1996, 21(6): 596―601. (in Chinese)
    [7]  俞茂宏, 杨松岩, 刘春阳, 等. 统一平面应变滑移线场理论[J]. 土木工程学报, 1997, 30(2): 14―26, 41.
     Yu Maohong, Yang Songyan, Liu Chunyang, et al. Unified plane-strain slip line field theory system [J]. China Civil Engineering Journal, 1997, 30(2): 14―26, 41. (in Chinese)
    [8]  Xu S Q, Yu M H. The effect of the intermediate principal stress on the ground response of circular openings in rock mass [J]. Rock Mechanics and Rock Engineering, 2006, 39(2): 169―181.
    [9]  Zhou X P, Yang H Q, Zhang Y X, et al. The effect of the intermediate principal stress on the ultimate bearing capacity of a foundation on rock mass [J]. Computers and Geotechnics, 2009, 36: 861―870.
    [10]  侯公羽, 牛晓松. 基于Levy-Mises本构关系及D-P屈服准则的轴对称圆巷理想弹塑性解[J]. 岩土力学, 2009, 30(6): 1555―1562.
     Hou Gongyu, Niu Xiaosong. Perfect elastoplastic solution of axisymmetric circular openings in rock mass based on Levy-Mises constitutive relation and D-P yield criterion [J]. Rock and Soil Mechanics, 2009, 30(6): 1555―1562. (in Chinese)
    [11]  张强, 王红英, 王水林, 等. 基于统一强度理论的破裂围岩劣化弹塑性分析[J]. 煤炭学报, 2010, 35(3): 381―386.
     Zhang Qiang, Wang Hongying, Wang Shuilin, et al. Deterioration elastoplastic analysis of cracked surrounding rocks based on unified strength theory [J]. Journal of China Coal Society, 2010, 35(3): 381―386. (in Chinese)
    [12]  徐栓强, 俞茂宏. 考虑中间主应力效应的隧洞岩石抗力系数的计算[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4303―4305.
     Xu Shuanqiang, Yu Maohong. Calculation of rock resistant factor in tunnel considering intermediate principal stress effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Suppl 1): 4303―4305. (in Chinese)
    [13]  蔡晓鸿, 蔡勇斌, 蔡勇平, 等. 考虑中间主应力影响的压力隧洞围岩抗力系数通用计算式[J]. 岩土工程学报, 2007, 29(7): 1004―1008.
     Cai Xiaohong, Cai Yongbin, Cai Yongping, et al. Calculation of resistance coefficient of adjoining rock of pressure tunnels considering effect of intermediate principal stress [J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1004―1008. (in Chinese)
    [14]  曾开华, 鞠海燕, 盛国君, 等. 巷道围岩弹塑性解析解及工程应用[J]. 煤炭学报, 2011, 36(5): 752―755.
     Zeng Kaihua, Ju Haiyan, Sheng Guojun, et al. Elastic-plastic analytical solutions for surrounding rocks of tunnels and its engineering applications [J]. Journal of China Coal Society, 2011, 36(5): 752―755. (in Chinese)
    [15]  曾开华, 鞠海燕, 张常光. 深埋圆形隧道弹塑性位移统一解及其比较分析[J]. 岩土力学, 2011, 32(5): 1315―1319.
     Zeng Kaihua, Ju Haiyan, Zhang Changguang. Elastoplastic unified solution for displacements around a deep circular tunnel and its comparative analysis [J]. Rock and Soil Mechanics, 2011, 32(5): 1315―1319. (in Chinese)
    [16]  邓楚键, 郑颖人, 王凯, 等. 有关岩土材料剪胀的讨论[J]. 岩土工程学报, 2009, 31(7): 1110―1114.
     Deng Chujian, Zheng Yingren, Wang Kai, et al. Some discussion on the dilatancy of geotechnical materials [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1110―1114. (in Chinese)
    [17]  邓楚键, 郑颖人, 朱建凯. 平面应变条件下M-C材料屈服时的中主应力公式[J]. 岩土力学, 2008, 29(2): 310―314.
     Deng Chujian, Zheng Yingren, Zhu Jiankai. Formula of intermediate principal stress at failure for Mohr-Coulomb material in plane strain state [J]. Rock and Soil Mechanics, 2008, 29(2): 310―314. (in Chinese)
    [18]  张学言, 闫澍旺. 岩土塑性力学基础[M]. 第2版. 天津: 天津大学出版社, 2006: 104.
     Zhang Xueyan, Yan Shuwang. Fundamentals of geotechnics plasticity [M]. 2nd ed. Tianjin: Tianjin University Press, 2006: 104. (in Chinese)
    [19]  卡斯特奈 H. 隧道与坑道静力学[M]. 上海: 上海科学技术出版社, 1980: 52.
     Kastner H. Static mechanics of tunnel [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1980: 52. (in Chinese)
    [20]  徐干成, 白洪才, 郑颖人, 等. 地下工程支护结构[M]. 北京: 中国水利水电出版社, 2002: 33―34.
     Xu Gancheng, Bai Hongcai, Zheng Yingren, et al. Safety support for underground works [M]. Beijing: China Water Power Press, 2002: 33―34. (in Chinese)
    [21]  关宝树. 隧道力学概论[M]. 成都: 西南交通大学出版社, 1993: 54―55.
     Guan Baoshu. Outline of tunnel mechanics [M]. Chengdu: Southwest Jiaotong University Press, 1993: 54―55. (in Chinese)
    [22]  潘岳, 王志强. 应变非线性软化的圆形硐室围岩荷载-位移关系研究[J]. 岩土力学, 2004, 25(10): 1515―1521.
     Pan Yue, Wang Zhiqiang. Research on relationship of load-displacement for cavern surrounding rock with strain nonlinear softening [J]. Rock and Soil Mechanics, 2004, 25(10): 1515―1521. (in Chinese)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  23
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-07
  • 修回日期:  2011-12-11

目录

    /

    返回文章
    返回