霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法

倪 敏, 苟小平, 王启智

倪 敏, 苟小平, 王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法[J]. 工程力学, 2013, 30(1): 365-372. DOI: 10.6052/j.issn.1000-4750.2011.07.0424
引用本文: 倪 敏, 苟小平, 王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法[J]. 工程力学, 2013, 30(1): 365-372. DOI: 10.6052/j.issn.1000-4750.2011.07.0424
NI Min, GOU Xiao-ping, WANG Qi-zhi. TEST METHOD FOR ROCK DYNAMIC FRACTURE TOUGHNESS USING SINGLE CLEAVAGE DRILLED COMPRESSION SPECIMEN IMPACTED BY SPLIT HOPKINSON PRESSURE BAR[J]. Engineering Mechanics, 2013, 30(1): 365-372. DOI: 10.6052/j.issn.1000-4750.2011.07.0424
Citation: NI Min, GOU Xiao-ping, WANG Qi-zhi. TEST METHOD FOR ROCK DYNAMIC FRACTURE TOUGHNESS USING SINGLE CLEAVAGE DRILLED COMPRESSION SPECIMEN IMPACTED BY SPLIT HOPKINSON PRESSURE BAR[J]. Engineering Mechanics, 2013, 30(1): 365-372. DOI: 10.6052/j.issn.1000-4750.2011.07.0424

霍普金森杆冲击压缩单裂纹圆孔板的岩石动态断裂韧度试验方法

基金项目: 国家自然科学基金项目(51179115);博士点基金项目(200806100042)
详细信息
    通讯作者:

    王启智

  • 中图分类号: O346.1

TEST METHOD FOR ROCK DYNAMIC FRACTURE TOUGHNESS USING SINGLE CLEAVAGE DRILLED COMPRESSION SPECIMEN IMPACTED BY SPLIT HOPKINSON PRESSURE BAR

  • 摘要: 对压缩单裂纹圆孔板(single cleavage drilled compression——SCDC)砂岩试样,利用分离式霍普金森压杆(SHPB)冲击加载,进行了岩石张开型(I型)动态断裂实验。分别采用2种方法确定砂岩的动态断裂韧度,第1种方法是实验-数值法:由SHPB弹性杆上应变片获得作用在试件上的加载力,然后输入有限元分析程序求得试样裂尖动态应力强度因子,对应于裂尖起裂时刻的动态应力强度因子即为材料动态断裂韧度值;第2种方法是准静态法:将载荷峰值代入静态应力强度因子公式确定动态断裂韧度。2种方法的结果差异较大,对无量纲裂纹长度a/R= 0.64(A组)试样,准静态方法确定的断裂韧度值要比实验-数值法确定的断裂韧度值平均要小35%~62%;对无量纲裂纹长度a/R=1.61(B组)试样,准静态方法的计算结果比实验-数值法的计算结果平均要小72%~83%。从原理上讲,实验-数值法比准静态法能更合理地测定岩石的动态断裂韧度。
    Abstract: The opening-mode (mode-I) dynamic fracture experiment for a sandstone was performed by using single cleavage drilled compression (SCDC) specimens impacted by split Hopkinson pressure bar (SHPB). The dynamic fracture toughness of rock was determined by two methods respectively. The first one was the experimental-numerical method: the dynamic load history was obtained from recordings of strain gauges glued on the bars of SHPB, the load was inputted to the finite element analysis program to calculate the dynamic stress intensity factor at the crack tip of specimens, and the dynamic fracture toughness is the stress intensity factor at the time of dynamic fracture initiation; the second one was the quasi-static method: the maximum load was inputted to the formula of a static stress intensity factor to determine the dynamic fracture toughness. Large differences of results were found between the experimental-numerical method and the quasi-static method: for specimens with dimensionless crack length a/R=0.64 (group A), the results of the quasi-static method were smaller than the results of the experimental-numerical method by 35%~62%; for specimens with dimensionless crack length a/R=1.61 (group B), the results of the quasi-static method were smaller than the results of the experimental-numerical method by 72%~83%. In principle, the experimental-numerical method can be used to measure rock dynamic fracture toughness more reasonably than the quasi-static method.
  • [1] Atkinson C, Smelser R E, Sanchez J. Combined mode fracture via the cracked Brazilian disk test [J]. International Journal of Fracture, 1982, 18: 279―291.
    [2] Chang Soo-Ho, Lee Chung-In, Jeon Seokwon. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens [J]. Engineering Geology, 2002, 66: 79―97.
    [3] Wang Q Z. Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 1006―1011.
    [4] Jiang Fengchun, Vecchio Kenneth S. Hopkinson bar loaded fracture experimental technique: A critical review of dynamic fracture toughness tests [J]. Applied Mechanics Reviews, 2009, 62(6): 060802-1―060802-39.
    [5] 刘剑飞, 王道荣, 胡时胜. 用于脆性材料的Hopkinson压杆动态试验新方法[J]. 实验力学, 2001, 16(3): 283―290.
    Liu Jianfei, Wang Daorong, Hu Shisheng. A novel experimental method of Hopkinson pressure bar system for brittle material [J]. Journal of Experimental Mechanics, 2001, 16(3): 283―290. (in Chinese)
    [6] Zhang Z X, Kou S Q, Yu J, et al. Effects of loading rate on rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(5): 597―611.
    [7] Weerasooriya T, Moy P, Casem D, et al. A four-point bend technique to determine dynamic fracture toughness of ceramics [J]. Journal of the American Ceramic Society, 2006, 89(3): 990―995.
    [8] 陈荣, 郭弦, 卢芳云, 夏开文. Stanstead 花岗岩动态断裂性能[J]. 岩石力学与工程学报, 2010, 29(2): 375―380.
    Chen Rong, Guo Xian, Lu Fangyun, Xia Kaiwen. Research on dynamic fracture behaviors of Stanstead granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 375―380. (in Chinese)
    [9] 山内良昭, 中野元博, 岸田敬三, 等. 中央切欠円板を用いた混合モード衝撃下におけるぜい性材料の破壊じん性の測定[J]. 材料, 2000, 49(12): 1324―1329.
    Yoshiaki Y, Motohiro N, Keizo K, et al. Measurement of fracture toughness for brittle materials under mixed-mode impact loading using center-notched disk specimen [J]. Journal of Society of Material Science, Japan, 2000, 49(12): 1324―1329. (in Japanese)
    [10] 张盛, 王启智. 采用中心圆孔裂缝平台圆盘确定岩石的动态断裂韧度[J]. 岩土工程学报, 2006, 28(6): 723―728.
    Zhang Sheng, Wang Qizhi. Method for determination of dynamic fracture toughness of rock using holed-cracked flattened disk specimen [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 723―728. (in Chinese)
    [11] 冯峰, 王启智. 大理岩I–II复合型动态断裂的实验研究[J]. 岩石力学与工程学报, 2009, 28(8): 1579―1586.
    Feng Feng, Wang Qizhi. An experimental study of mixed-mode I-II dynamic fracture of marble [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1579―1586. (in Chinese)
    [12] Guo W G, Li Y L, Liu Y Y. Analytical and experimental determination of dynamic impact stress intensity factor for 40Cr steel [J]. Theoretical and Applied Fracture Mechanics, 1997, 26: 29―34.
    [13] Weisbrod G, Rittel D. A method for dynamic fracture toughness determination using short beams [J]. International Journal of Fracture, 2000, 104: 89―103.
    [14] 倪敏, 苟小平, 王启智. 压缩双裂纹圆孔板和压缩单裂纹圆孔板的应力强度因子公式[J]. 力学学报, doi: 10.6052/0459-1879-12-179.
    Ni Min, Gou Xiaoping, Wang Qizhi. Stress intensity factor formulas for DCDC and SCDC specimens [J]. doi: 10.6052/0459-1879-12-179. (in Chinese)
    [15] He M Y, Turner M R, Evans A G. Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities [J]. Acta Metallurgica Materials, 1995, 43(9): 3453―3458.
    [16] 范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006: 575―592, 390―391.
    Fan Tianyou. Principle and application of fracture dynamics [M]. Beijing: Beijing Institute of Technology Press, 2006: 575―592, 390―391. (in Chinese)
    [17] B?hme W, Kalthoff J F. The behavior of notched bend specimens in impact testing [J]. International Journal of Fracture, 1982, 20(4): 139―143.
    [18] 张盛, 王启智, 梁亚磊. 裂缝长度对岩石动态断裂韧度测试值影响的研究[J]. 岩石力学与工程学报, 2009, 28(8): 1691―1696.
    Zhang Sheng, Wang Qizhi, Liang Yalei. Research on influence of crack length on test values of rock dynamic fracture toughness [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1691―1696. (in Chinese)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  33
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-01-24

目录

    /

    返回文章
    返回