檐沟对低矮房屋屋面风荷载的影响

黄 鹏, 陶 玲, 全 涌, 顾 明

黄 鹏, 陶 玲, 全 涌, 顾 明. 檐沟对低矮房屋屋面风荷载的影响[J]. 工程力学, 2013, 30(1): 248-254. DOI: 10.6052/j.issn.1000-4750.2011.06.0346
引用本文: 黄 鹏, 陶 玲, 全 涌, 顾 明. 檐沟对低矮房屋屋面风荷载的影响[J]. 工程力学, 2013, 30(1): 248-254. DOI: 10.6052/j.issn.1000-4750.2011.06.0346
HUANG Peng, TAO Ling, QUAN Yong, GU Ming. EFFECT OF EAVES GUTTER ON WIND LOADINGS ON LOW-RISE BUILDINGS’ ROOFS[J]. Engineering Mechanics, 2013, 30(1): 248-254. DOI: 10.6052/j.issn.1000-4750.2011.06.0346
Citation: HUANG Peng, TAO Ling, QUAN Yong, GU Ming. EFFECT OF EAVES GUTTER ON WIND LOADINGS ON LOW-RISE BUILDINGS’ ROOFS[J]. Engineering Mechanics, 2013, 30(1): 248-254. DOI: 10.6052/j.issn.1000-4750.2011.06.0346

檐沟对低矮房屋屋面风荷载的影响

基金项目: 国家自然科学基金项目(51178352,90715040)
详细信息
  • 中图分类号: TU312

EFFECT OF EAVES GUTTER ON WIND LOADINGS ON LOW-RISE BUILDINGS’ ROOFS

  • 摘要: 为了研究细部构造(檐沟)对低矮房屋屋面风荷载的影响,在同济大学TJ-2风洞试验室对无屋脊硬山屋面、有屋脊硬山屋面、无屋脊出山屋面及有屋脊出山屋面这4种屋面分别做了有檐沟、无檐沟的刚性模型测压试验。试验结果表明:檐沟的存在对于减小屋面各区域的用于主体结构设计的平均风压和用于围护结构设计的极值风压大都有较好的作用,尤其是最不利的极值负风压,其减小的幅度最大达到30%。屋脊、出山和檐沟的共同存在会使屋面各区域的平均风压和极值风压都有不同程度的减小,特别是屋面负压敏感区域的极值负压得到了很大的缓和,减小幅度最大高达60%,从而使屋面各区域的极值负压趋于均匀,且随着它们高度的增加,这种效果更加明显,这对于房屋的抗风设计非常有利。
    Abstract: In order to study the effect of configuration details of the roof eaves gutter on the wind loadings on roofs of low-rise buildings, the rigid model pressure measurement tests of typical low-rise buildings of four types of roofs with and without eaves gutter were conducted in TJ-2 wind tunnel laboratory, which are roofs with flush gable wall and with\without ridge respectively, and roofs with protruding gable wall and with\without ridge respectively. The results show that the existence of eaves gutter is effective in decreasing the mean and worst peak wind pressure of each region, which are used for main wind force resisting system and components and cladding design, respectively, in particular to the worst peak negative pressure, 30 percent of which is reduced at most. The mean and peak negative pressure of each region of the roofs are alleviated to varied degrees when the building is equipped with ridge, protruding gable wall and eaves gutter, the loads of the zones where are negative seriously are mitigated largely, up to 60 percent of which is relieved at most, thus the loads of each region are getting uniform. Moreover, with the increasing of whose heights, this effect is more evident, which is quite favorable for building wind resistance.
  • [1] 陶玲, 黄鹏, 全涌, 顾明. 屋脊和出山对低矮房屋屋面风荷载的影响[J]. 工程力学, 2012, 29(4): 113―121.
    Tao Ling, Huang Peng, Quan Yong, Gu Ming. Effects of ridge and protruding gable wall on wind loadings on low-rise building’s roofs [J]. Engineering Mechanics, 2012, 29(4): 113―121. (in Chinese)
    [2] 黄鹏, 陶玲, 全涌, 顾明. 浙江省沿海地区农村房屋抗风情况调研[J]. 灾害学, 2010, 25(4): 90―95.
    Huang Peng, Tao Ling, Quan Yong, Gu Ming. Investigation of wind resistance performance of rural houses in coastal area in Zhejiang Province [J]. Journal of Catastrophology, 2010, 25(4): 90―95. (in Chinese)
    [3] 2005浙J15 瓦屋面 浙江省建筑标准图集[S]. 北京: 中国建筑工业出版社, 2005.
    2005 Zhe J15 Tile Roof Zhejiang Province Architecture Standard Drawings [S]. Beijing: China Architecture & Industry Press, 2005. (in Chinese)
    [4] Robertson A P. Effect of eaves detail on wind pressures over an industrial building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 38: 325―333.
    [5] 赵雅丽, 全涌, 黄鹏, 等. 典型双坡屋面风压分布特性风洞试验研究[J]. 同济大学学报: 自然科学版, 2010, 38(11): 1586―1592.
    Zhao Yali, Quan Yong, Huang Peng, et al. Wind tunnel test study on wind pressure on typical gable roofs of low-rise buildings [J]. Journal of Tongji University: Natural Science, 2010, 38(11): 1586―1592. (in Chinese)
    [6] GB 50009-2001, 建筑结构荷载规范(2006年版)[S]. 北京: 中国建筑工业出版社, 2002.
    GB 50009-2001, Load code for the design of building structures (2006 edition) [S]. Beijing: China Architecture & Industry Press, 2002. (in Chinese)
    [7] 陶玲, 黄鹏, 全涌, 顾明. L形平面低矮房屋屋面的风荷载特性[J]. 同济大学学报, 2011, 39(11): 111―117.
    Tao Ling, Huang Peng, Quan Yong, Gu Ming. Wind loading characteristic of low-rise buildings roof with L-shape plan [J]. Journal of Tongji University, 2011, 39(11): 111―117. (in Chinese)
    [8] Sadek F, Simiu E. Peak non-Gaussian wind effects for database-assisted low-rise building design [J]. Journal of Engineering Mechanics, 2002(5): 530―539.
    [9] American Society of Civil Engineers, ASCE Standard, Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-05 [S]. Reston, VA, USA: ASCE, 2005.
    [10] Lawson T V. Wind effects on buildings, vol. 1, design applications [M]. Basking: Applied Science Publishers, 1980: 41―42.
    [11] Unematsu Y, Isyumov N. Peak gust pressures acting on the roof and wall edges of a low-rise building [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77 & 78: 217―231.
    [12] Unematsu Y, Isyumov N. Review wind pressures acting on low-rise buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 82: 1―25.
    [13] Lythe G, Surry D. Wind loading of flat roofs with and without parapets [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 11(1/2/3): 75―94.
计量
  • 文章访问数:  569
  • HTML全文浏览量:  33
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-01-24

目录

    /

    返回文章
    返回