含椭圆孔压电材料的电弹场

刘淑红 李延强 沈英明

刘淑红 李延强 沈英明. 含椭圆孔压电材料的电弹场[J]. 工程力学, 2012, 29(12): 45-50. DOI: 10.6052/j.issn.1000-4750.2011.05.0288
引用本文: 刘淑红 李延强 沈英明. 含椭圆孔压电材料的电弹场[J]. 工程力学, 2012, 29(12): 45-50. DOI: 10.6052/j.issn.1000-4750.2011.05.0288
LIU Shu-hong. THE ELECTRO-ELASTIC FIELDS OF PIEZOELECTRIC MATERIALS WITH AN ELLIPTIC HOLE[J]. Engineering Mechanics, 2012, 29(12): 45-50. DOI: 10.6052/j.issn.1000-4750.2011.05.0288
Citation: LIU Shu-hong. THE ELECTRO-ELASTIC FIELDS OF PIEZOELECTRIC MATERIALS WITH AN ELLIPTIC HOLE[J]. Engineering Mechanics, 2012, 29(12): 45-50. DOI: 10.6052/j.issn.1000-4750.2011.05.0288

含椭圆孔压电材料的电弹场

基金项目: 河北省自然科学基金项目(A2011210033);河北省教育厅科研项目(ZH2011116);河北省高等教育教学改革研究项目(103024)
详细信息
  • 中图分类号: O343

THE ELECTRO-ELASTIC FIELDS OF PIEZOELECTRIC MATERIALS WITH AN ELLIPTIC HOLE

  • 摘要: 采用复变函数的方法,研究了含椭圆孔的压电材料在无限远处受力电荷载作用的平面问题。与已有文献不同,通过求解10元一次方程,得到了满足可导通和不可导通电边界条件,孔内和压电材料体内电弹场的通解。以PZT一4压电陶瓷为例,给出了孔内的电场、压电材料体内电弹场沿孔边和坐标轴向的分布情况。得出了以下新的结论:含椭圆孔压电材料的电弹场与边界条件、力电荷载的方向、椭圆孔的形状有关,但在水平方向的拉伸载荷和电位移的作用下,椭圆孔的形状对长半轴处的环向电位移和正应力的最大值没有影响。
    Abstract: Based on the complex potential approach, two-dimensional electromechanical analysis was performed on a transversely isotropic piezoelectric material containing an elliptic hole subjected to remote electromechanical loads. By solving ten-variable linear equations, the analytical solutions were given at both inside and outside the hole, which satisfied the permeable and impermeable electric boundary conditions. Taking PZT-4 ceramic as an exmple, the electric field in the hole was obtained, as well as the distributions of the electromechanical fields on the rim of the elliptic hole and along the axes. It is found that the electromechanical fields are related to the electric boundary conditions, the directions of electromechanical loads and the geometrical shape of the elliptic hole in principle, while the elliptical geometry has no influence on the hoop electric displacement and stress at the major semi-axis subjected to the remote horizontal loads of the tension and electric displacement.
  • [1] Sosa H. Plane problems in piezoelectric media with defects [J]. International Journal of Solids and Structures, 1991, 28: 491―505.
    [2] Sosa H, Khutoryansky N. New developments concerning piezoelectric materials with defects [J]. International Journal of Solids and Structures, 1996, 33: 3399―3414.
    [3] Gao C F, Fan W X. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack [J]. International Journal of Solids and Structures, 1999, 36: 2527―2540.
    [4] Dai L C, Guo W L, Wang X. Stress concentration at an elliptic hole in transversely isotropic piezoelectric solids [J]. International Journal of Solids and Structures, 2006, 43: 1818―1831.
    [5] Aparicio J, Sosa H, Palma R. Numerical investigations of field-defect interactions in piezoelectric ceramics [J]. International Journal of Solids and Structures, 2007, 44: 4892―4908.
    [6] 高存法, 董登科. 含椭圆孔压电材料平面问题的复变函数解[J]. 工程力学, 1998, 15(3): 98―104.
    Gao Cunfa, Dong Dengke. The complex functions for plane problems of piezoelectric material with an elliptical hole [J]. Engineering Mechanics, 1998, 15(3): 98―104. (in Chinese)
    [7] Liu B, Fang D N, Hwang K C. On the effect of remanent polarization on electro-mechanical fields near an elliptic cavity in poled or depolarized piezoelectric ceramics [J]. International Journal of Fracture, 2000, 103(2): 189―204.
    [8] Gao C F, Fan W X. Fundamental solutions for the plane problem in piezoelectric media with an elliptic hole or a crack [J]. Applied Mathematics and Mechanics, 1998, 19(11): 1043―1052.
    [9] Chung M Y, Ting T C T. Piezoelectric solid with an elliptic inclusion or hole [J]. International Journal of Solids and Structures, 1996, 33: 3343―3361.
    [10] Zhang T Y, Qian C F, Pin T. Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material [J]. International Journal of Solids and Structures, 1998, 35: 2121―2149.
    [11] Gao C F. Further study on the generalized 2D problem of an elliptical hole or a crack in piezoelectric media [J]. Mechanics Research Communications, 2000, 27(4): 429―434.
    [12] Lu P, Chen H B. Singular solutions of anisotropic plate with an elliptical hole or a crack [J]. Acta Mechanica Solida Sinica, 2005, 18(2): 130―141.
    [13] Hwu C B. Some explicit expressions of extended Stroh formalism for two-dimensional piezoelectric anisotropic elasticity [J]. International Journal of Solids and Structure, 2008, 45(16): 4460―4473.
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  23
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-08
  • 修回日期:  2011-11-30
  • 刊出日期:  2012-12-23

目录

    /

    返回文章
    返回