基于细观结构统计特征的混凝土几何代表体尺寸研究

王 娟 李庆斌 卿龙邦 管俊峰

王 娟 李庆斌 卿龙邦 管俊峰. 基于细观结构统计特征的混凝土几何代表体尺寸研究[J]. 工程力学, 2012, 29(12): 1-6. DOI: 10.6052/j.issn.1000-4750.2011.05.0278
引用本文: 王 娟 李庆斌 卿龙邦 管俊峰. 基于细观结构统计特征的混凝土几何代表体尺寸研究[J]. 工程力学, 2012, 29(12): 1-6. DOI: 10.6052/j.issn.1000-4750.2011.05.0278
WANG Juan. STUDIES ON REPRESENTATIVE VOLUME ELEMENT SIZE OF CONCRETE BASED ON MESO-STRUCTURE STATISTICS[J]. Engineering Mechanics, 2012, 29(12): 1-6. DOI: 10.6052/j.issn.1000-4750.2011.05.0278
Citation: WANG Juan. STUDIES ON REPRESENTATIVE VOLUME ELEMENT SIZE OF CONCRETE BASED ON MESO-STRUCTURE STATISTICS[J]. Engineering Mechanics, 2012, 29(12): 1-6. DOI: 10.6052/j.issn.1000-4750.2011.05.0278

基于细观结构统计特征的混凝土几何代表体尺寸研究

基金项目: 国家自然科学基金项目(90715041);十一五支撑计划项目(2008BAB29B05)
详细信息
  • 中图分类号: TV43

STUDIES ON REPRESENTATIVE VOLUME ELEMENT SIZE OF CONCRETE BASED ON MESO-STRUCTURE STATISTICS

  • 摘要: 该文在对混凝土细观结构统计特征深入研究的基础上,基于粗骨料含量、平均粒径、细度模数三个量的统计特征分析,给出了混凝土几何代表体的定义。利用体素的概念,提出了混凝土几何代表体尺寸的确定方法。以一级配混凝土为例,采用该文方法计算得到了基于细观结构的几何代表体尺寸。进一步分析了骨料级配、骨料体积含量等因素对混凝土几何代表体尺寸的影响规律,研究结果表明:随着骨料体积含量的增加,混凝土几何代表体尺寸呈下降趋势;在粗骨料体积含量达到40%以后,几何代表体尺寸变化幅度较小;一级配混凝土的几何代表体尺寸与最大骨料粒径的比值大于二级配混凝土的相应值。该文工作为混凝土细观机理研究、细观数值计算样本的选取等提供参考。
    Abstract: In this paper, a definition of a representative volume element (RVE) based on the meso-structure of concrete, as well as a method for determining the RVE size of concrete is proposed by means of statistical analyses of the mesoscale structural characteristics of concrete. The voxel concept is employed to calculate the statistical variable of a volume fraction, the average diameter and fineness module of a coarse aggregate. Accordingly, the RVE size of one-grade concrete is quantitatively determined. The effects of an aggregate gradation, the aggregate volume fraction on RVE size are also studied.?The data show that: the RVE size decreases with the increase of the aggregate volume fraction and gradually become stable; the ratio of RVE size to the maximum aggregate diameter for one-grade concrete is larger than that for two-grade concrete. The results have implications in choosing a meso-structure of concrete for the mechanical study at meso level and numerical simulation.
  • [1] Grufman C, Ellyin F. Determining a representative volume element capturing the morphology of fibre reinforced polymer composites [J]. Composites Science and Technology, 2007, 67(3/4): 766―775.
    [2] Graham S, Yang N. Representative volumes of materials based on microstructural statistics [J]. Scripta Materialia, 2003, 48: 269―274.
    [3] Al-Raoush R, Papadopoulos A. Representative elementary volume analysis of porous media using X-ray computed tomography [J]. Powder Technology, 2010, 200(1/2): 69―77.
    [4] Grassl P, Wong H S, Buenfeld N R. Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar [J]. Cement and Concrete Research, 2010, 40(1): 85―93.
    [5] Man H, van Mier J G M. Influence of particle density on 3D size effects in the fracture of (numerical) concrete [J]. Mechanics of Materials, 2008, 40(6): 470―486.
    [6] Lilliu G, Van J G M. 3D lattice type fracture model for concrete [J]. Engineering Fracture Mechanics, 2003, 70: 927―941.
    [7] Pez C M L, Carol I, Aguado A. Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior [J]. Materials and Structures, 2008, 41(3): 583―599.
    [8] 党发宁, 韩文涛, 田威. 混凝土单轴压缩破坏过程的三维细观数值模拟[J]. 西安理工大学学报, 2006, 22(2): 113―118.
    Dang Faning, Han Wentao, Tian Wei. Three-dimensional numerical simulation on meso-level of uniaxial failure process in concrete [J]. Journal of Xi’an University of Technology, 2006, 22(2): 113―118. (in Chinese)
    [9] Lawler J S, Keane D T, Shah S P. Measuring three-dimensional damage in concrete under compression [J]. ACI Materials Journal, 2001, 98(6): 465―475.
    [10] Guo L, Carpinteri A, Sun W, et al. Measurement and analysis of defects in high-performance concrete with three-dimensional micro-computer tomography [J]. Journal of Southeast University (English Edition), 2009, 25(1): 83―88.
    [11] Xu X F, Chen X. Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element [J]. Mechanics of Materials, 2009, 41(2): 174―186.
    [12] Gitman M I, Askes H, Sluys L J. Representative volume: Existence and size determination [J]. Engineering Fracture Mechanics, 2007, 74(16): 2518―2534.
    [13] 刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报(自然科学版), 1996, 36(1): 84―89.
    Liu Guangting, Wang Zongmin. Numerical simulation study of fracture of concrete materials using random aggregate model [J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84―89. (in Chinese)
    [14] 杜成斌, 孙立国. 任意形状混凝土骨料的数值模拟及其应用[J]. 水利学报, 2006, 37(6): 662―667.
    Du Chengbin, Sun Liguo. Numerical simulation of concrete aggregates with arbitrary shapes and its application [J]. Journal of Hydraulic Engineering, 2006, 37(6): 662―667. (in Chinese)
    [15] 马怀发, 陈厚群, 吴建平, 等. 大坝混凝土三维细观力学数值模型研究[J]. 计算力学学报, 2008, 25(2): 241―247.
    Ma Huaifa, Chen Houqun, Wu Jianping, et al. Study on numerical algorithm of 3D meso-mechanics model of dam concrete [J]. Chinese Journal of Computational Mechanics, 2008, 25(2): 241―247. (in Chinese)
    [16] Zhu W C, Tang C A, Wang S Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete [J]. Structural Engineering and Mechanics, 2005, 19(5): 519―533.
计量
  • 文章访问数:  1233
  • HTML全文浏览量:  31
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-06
  • 修回日期:  2011-09-21
  • 刊出日期:  2012-12-23

目录

    /

    返回文章
    返回