超空泡射弹尾拍结构动力学响应分析

何乾坤, 魏英杰, 王 聪, 曹 伟, 张嘉钟

何乾坤, 魏英杰, 王 聪, 曹 伟, 张嘉钟. 超空泡射弹尾拍结构动力学响应分析[J]. 工程力学, 2012, 29(11): 370-374. DOI: 10.6052/j.issn.1000-4750.2011.03.0157
引用本文: 何乾坤, 魏英杰, 王 聪, 曹 伟, 张嘉钟. 超空泡射弹尾拍结构动力学响应分析[J]. 工程力学, 2012, 29(11): 370-374. DOI: 10.6052/j.issn.1000-4750.2011.03.0157
HE Qian-kun, WEI Ying-jie, WANG Cong, CAO Wei, ZHANG Jia-zhong. DYNAMIC RESPONSES OF SUPERCAVITATING PROJECTILE IMPACTED BY TAIL FORCES[J]. Engineering Mechanics, 2012, 29(11): 370-374. DOI: 10.6052/j.issn.1000-4750.2011.03.0157
Citation: HE Qian-kun, WEI Ying-jie, WANG Cong, CAO Wei, ZHANG Jia-zhong. DYNAMIC RESPONSES OF SUPERCAVITATING PROJECTILE IMPACTED BY TAIL FORCES[J]. Engineering Mechanics, 2012, 29(11): 370-374. DOI: 10.6052/j.issn.1000-4750.2011.03.0157

超空泡射弹尾拍结构动力学响应分析

基金项目: 国家自然科学基金项目(10802026)
详细信息
    通讯作者:

    何乾坤

  • 中图分类号: O342 | O353

DYNAMIC RESPONSES OF SUPERCAVITATING PROJECTILE IMPACTED BY TAIL FORCES

  • 摘要: 超空泡射弹在运动过程中存在尾拍现象,导致结构发生振动,影响射弹的弹道稳定性,降低射弹结构的可靠性。该文建立了射弹无约束动力学方程,使用有限元法求解得到了超空泡射弹在尾拍载荷作用下的动力学响应,并对射弹的加固模型进行了分析,给出了环状加强筋个数、直径以及间距对降低射弹振幅效果的影响。研究结果表明:超空泡射弹在尾拍运动过程中转动周期和幅值随加强筋个数的增大而增大;射弹头部的弹性振动幅值随加强筋个数和直径的增大而减小,振动周期亦随加强筋个数的增大而减小;加强筋距离的减小,对于降低射弹中部振幅效果明显,但对射弹头部的振动几乎没有影响。
    Abstract: When supercavitating projectiles move at a high speed, the periodic impacts (“tail-slap”) with interior surface of the cavity will generally occur. The interactions between the vehicle and the water/cavity interface are sources of structural vibrations, which affect the guidance of the vehicle and undermine the structural reliability. In this paper, the dynamic equation of supercaviting projectile with no constraints is established and solved by finite element method. The dynamic behaviour of supercavitating projectile operating in tail-slap conditions is obtained. And, the effectiveness of periodically placed stiffening rings in reducing the amplitude of the vibrations induced by tail-slap impacts is investigated by considering the difference in number, thickness and spaces-between for the rings. The results show: supercavitating projectile oscillates periodically | larger ring number causes longer impact duration and the penetration distance for the stiffened body is high compared to the plain body | the amplitude of elastic vibrations on projectile nose decreases as the number and the thickness of stiffeners increase | similarly, the period of oscillation decreases with the increment of the stiffener | as for the influence of space-between of stiffeners, the smaller it is, the effect of reducing the oscillation amplitude of mid-part is more obvious | however, the location of the stiffeners almost has no influences on the vibrations of projectile’s nose.
  • [1]
    [2] [1] 吕志民, 申超, 陈永奎. 超空泡射弹技术探讨[J]. 舰船科学技术, 2007, 29(1): 92―94.
    [3] Lü Zhimin, Shen Chao, Chen Yongkui. The research of supercavitation projectile technology [J]. Ship Science and Technology, 2007, 29(1): 92―94. (in Chinese)
    [4] [2] Savchenko Y N. Control of supercavitation flow and stability of supercavitating motion of bodies [C]// VKI Special Course on Supercavitating Flows. Brussels: RTO2AVT and VKI, 2001: 313―341.
    [5] [3] 孟庆昌, 张志宏, 顾建农, 等. 超空泡射弹尾拍分析与计算[J]. 爆炸与冲击, 2009, 29(1): 56―60.
    [6] Meng Qingchang, Zhang Zhihong, Gu Jiannong, et al. Analysis and calculation for tail-slaps of supercavitating projectiles [J]. Explosion And Shock Waves, 2009, 29(1): 56―60. (in Chinese)
    [7] [4] Kulkarni S S, Pratap R. Studies on the dynamics of a supercavitating projectile [J]. Applied Mathematical Modeling, 2000, 24: 113―129.
    [8] [5] Ruzzene M, Soranna F. Impact dynamics of elastic stiffened supercavitating underwater vehicles [J]. Journal of Vibration and Control, 2004, 10: 243―267.
    [9] [6] 杨传武, 王安稳. 冲击载荷作用下超空泡水下航行体的结构响应[J]. 华中科技大学学报(自然科学版), 2008, 36(7): 129―132.
    [10] Yang Chuanwu, Wang Anwen. Structural response of supercavitating underwater vehicles subjected to impact loads [J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2008, 36(7): 129―132. (in Chinese)
    [11] [7] 杨传武, 王安稳. 动态轴向载荷对超空泡航行体振动特性的影响[J]. 华中科技大学学报(自然科学版), 2008, 36(12): 71―74.
    [12] Yang Chuanwu, Wang Anwen. Influence of dynamic axial loads on the vibration characteristics of supercavitation underwater vehicle [J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2008, 36(12): 71―74. (in Chinese)
    [13] [8] 张劲生, 张嘉钟, 魏英杰, 等. 超空泡水下航行体的结构动力响应特性[J]. 北京航空航天大学学报, 2010, 36(4): 411―414.
    [14] Zhang Jinsheng, Zhang Jiazhong, Wei Yingjie, et al. Structural dynamic response characteristics of supercavitating underwater vehicles [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 411―414. (in Chinese)
    [15] [9] Zhang J Z, Zhang J S, Wei Y J. Simulation of tail-slap loads of supercavitating projectiles [C]// Third International Conference on Information and Computing. Jiangnan: IEEE, 2010: 163―166.
    [16] [10] May A. Water entry and the cavity-running behavior of missiles [R]. Maryland: NTIS, 1975.
    [17] [11] Rand R, Pratap R, Ramani D, et al. Impact dynamics of a supercavitating underwater projectile [C]. Proceedings of DETC’97. California: ASME, 1997: 1―11.
    [18] [12] Castano J M, Kuklinski R. High-speed supercavitating underwater vehicle [P]. United States: US 6739266 B, May 25, 2004.
    [19]  
    [20]
    [21]
    [22]
    [23]
计量
  • 文章访问数:  616
  • HTML全文浏览量:  21
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-22
  • 修回日期:  2011-09-16
  • 刊出日期:  2012-11-24

目录

    /

    返回文章
    返回