用切口尖端单元分析各向异性材料中多边形孔奇异性应力场

平学成, 陈梦成, 谢基龙, 刘万辉

平学成, 陈梦成, 谢基龙, 刘万辉. 用切口尖端单元分析各向异性材料中多边形孔奇异性应力场[J]. 工程力学, 2012, 29(10): 27-33. DOI: 10.6052/j.issn.1000-4750.2011.02.0065
引用本文: 平学成, 陈梦成, 谢基龙, 刘万辉. 用切口尖端单元分析各向异性材料中多边形孔奇异性应力场[J]. 工程力学, 2012, 29(10): 27-33. DOI: 10.6052/j.issn.1000-4750.2011.02.0065
PING Xue-cheng, CHEN Meng-cheng, XIE Ji-long, LIU Wan-hui. ANALYSIS OF SINGULAR STRESS FIELDS OF POLYGONAL HOLES IN AN ANISOTROPIC MATERIAL WITH A CORNER TIP ELEMENT[J]. Engineering Mechanics, 2012, 29(10): 27-33. DOI: 10.6052/j.issn.1000-4750.2011.02.0065
Citation: PING Xue-cheng, CHEN Meng-cheng, XIE Ji-long, LIU Wan-hui. ANALYSIS OF SINGULAR STRESS FIELDS OF POLYGONAL HOLES IN AN ANISOTROPIC MATERIAL WITH A CORNER TIP ELEMENT[J]. Engineering Mechanics, 2012, 29(10): 27-33. DOI: 10.6052/j.issn.1000-4750.2011.02.0065

用切口尖端单元分析各向异性材料中多边形孔奇异性应力场

基金项目: 国家自然科学基金项目(10662004, 51065008);江西省自然科学基金项目(2010GZW0013)
详细信息
    作者简介:

    陈梦成(1962-),男,江西高安人,教授,博士,从事断裂力学与结构工程研究(E-mail:mengchen_chen@yahoo.com.cn);谢基龙(1961-),男,黑龙江齐齐哈尔人,教授,博士,从事车辆结构抗疲劳设计(E-mail:jlxie@bjtu.edu.cn);刘万辉(1991-),男,江西吉安人,硕士生,从事车辆悬架动力学研究(E-mail:liuwanhui1019@163.com).

    通讯作者:

    平学成(1975-),男,黑龙江延寿人,副教授,博士,从事机械结构强度与动力学研究(E-mail:xuecheng_ping@yahoo.com.cn).

  • 中图分类号: O346.1

ANALYSIS OF SINGULAR STRESS FIELDS OF POLYGONAL HOLES IN AN ANISOTROPIC MATERIAL WITH A CORNER TIP ELEMENT

  • 摘要: 该文提出了一种基于全数值方法的新型杂交元方法, 用于研究各向异性复合材料中多边形孔奇异性应力场干涉问题。该方法的建立分3 个步骤:首先, 用一维有限元方法求解各向异性材料切口尖端奇异性应力场数值特征解;然后, 采用杂交有限元列式构造一种超级切口尖端单元, 其中, 假设应力场和位移场是利用上述奇异性场数值特征解推导出来的;最后, 将上述超级切口尖端单元与传统4 结点杂交应力元组装, 得到新型杂交元方法。算例中, 将裂纹问题作为考核例, 并进一步考察双菱形孔和双矩形孔的奇异性应力干涉问题。算例表明:当前模型能降低单元数, 且精度好;与传统有限元法和积分方程方法相比, 该模型更具有通用性和高效性, 为各向异性材料的细观力学分析打下了基础。
    Abstract: A novel hybrid finite element method based on a full numerical procedure is proposed to compute the singular field in the interaction of double polygonal holes in anisotropic material. The novel hybrid finite element method is established by the following three steps: 1) an ad hoc one-dimensional finite formulation is employed to determined the numerical eigensolution of the singular field near an angular corner; 2) a super corner element is constructed to determine the strength of the singular field, in which the independent assumed stress fields are extracted from the numerical eigensolution obtained from previous ad hoc one-dimensional finite element formulation; 3) a novel hybrid finite element equation is obtained by coupling the super corner element with conventional hybrid stress elements. In numerical examples, a central crack problem is firstly considered to validate the present method, and then singular stress fields for interacting double diamond holes and double rectangular holes are investigated. The numerical results show that present method yields satisfactory results with fewer elements. Compared with conventional finite element methods and integral equation methods, the present method is more suitable to deal with micromechanics of anisotropic materials.
  • [1] Bowie O L, Freese C E. Central crack in planeorthotropic rectangular sheet [J]. International Journal ofFracture Mechanics, 1972, 8(1): 49-55.

    [2] Xu J J, Yuuki R. Stress intensity factors for interfacecrack between dissimilar orthotropic materials (The casewhere principal axes are not aligned with the interface)[J]. Transactions of JSME, 1994, A60(577): 1943-1950.

    [3] Wu K C, Chen C T. Stress analysis of anisotropic elasticV-notched bodies [J]. International Journal of Solids andStructures, 1996, 33(17): 2403-2416.

    [4] Li X F. Closed-form solution for two collinear mode-IIIcracks in an orthotropic elastic strip of finite width [J].Mechanics Research Communications, 2003, 30(4):365-370.

    [5] Zhou Z G, Wang B. Investigation of the interaction oftwo collinear cracks in anisotropic elasticity materials bymeans of the nonlocal theory [J]. International Journal ofEngineering Science, 2005, 43(13/14): 1107-1120.

    [6] 牛忠荣, 程长征, 胡宗军, 叶建乔. V 形切口应力强度因子的一种边界元分析方法[J]. 力学学报, 2008, 40(6):849-857.Niu Zhongrong, Cheng Changzheng, Hu Zongjun, YeJianqiao. Boundary element analysis of the stressintensity factors for the V-notched structures [J]. ChineseJournal of Theoretical and Applied Mechanics, 2008,40(6): 849-857. (in Chinese)

    [7] Tong P. A hybrid crack element for rectilinearanisotropic material [J]. International Journal forNumerical Methods in Engineering, 1977, 11(2): 377-403.

    [8] Banks-Sills L, Hershkovitz I, Wawrzynek P A, Eliasi R,Ingraffea A R. Methods for calculating stress intensityfactors in anisotropic materials: Part I-z=0 is a symmetricplane [J]. Engineering Fracture Mechanics, 2005, 72(8):2328-2358.

    [9] Ozkan U, Nied H F, Kaya A C. Fracture analysis ofanisotropic materials using enriched crack tip elements[J]. Engineering Fracture Mechanics, 2010, 77(7):1191-1202.

    [10] Kohno Y, Ishikawa H. Singularities and stress intensitiesat the corner point of a polygonal hole and rigidpolygonal inclusion under antiplane shear [J].International Journal of Engineering Science, 1995,33(11): 1547-1560.

    [11] Ukadgaonker V G, Kakhandki V. Stress analysis for anorthotropic plate with an irregular shaped hole fordifferent in-plane loading conditions—Part 1 [J].Computers & Structures, 2005, 70(3): 255-274.

    [12] Dong C Y. Effective elastic properties of doubly periodicarray of inclusions of various shapes by the boundaryelement method [J]. International Journal of Solids andStructures, 2006, 43(25/26): 7919-7938.

    [13] Chen D H. Analysis of singular stress field around theinclusion corner tip [J]. Engineering Fracture Mechanics,1994, 49(4): 533-546.

    [14] Chen M C, Ping X C. Analysis of the interaction within arectangular array of rectangular inclusions using a newhybrid finite element method [J]. Engineering FractureMechanics, 2009, 76(4): 580-593.

    [15] Chen M C, Ping X C. A novel hybrid finite elementanalysis of inplane singular elastic field around inclusioncorners in elastic media [J]. International Journal ofSolids and Structures, 2009, 46(13): 2527-2538.

    [16] Sze K Y, Wang H T. A simple finite element formulationfor computing stress singularities at bimaterial interfaces[J]. Finite Elements in Analysis and Design, 2000, 35(2):97-118.

    [17] 王海涛, 杨笑梅. 用裂纹单元分析双压电材料界面力电耦合奇异场[J]. 工程力学, 2007, 24(3): 170-178.Wang Haitao, Yang Xiaomei. Analysis of singularelectromechanical fields at the interfaces of bimorph witha “cracked element” [J]. Engineering Mechanics, 2007,24(3): 170-178. (in Chinese)

    [18] Pian T H H, Sumihara K. Rational approach for assumedstress finite elements [J]. International Journal forNumerical Methods in Engineering, 1984, 20(9): 1685-1695.
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  17
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-27
  • 修回日期:  2011-08-19
  • 刊出日期:  2012-10-24

目录

    /

    返回文章
    返回