非保守力和热载荷作用下FGM梁的稳定性

赵凤群, 王忠民

赵凤群, 王忠民. 非保守力和热载荷作用下FGM梁的稳定性[J]. 工程力学, 2012, 29(10): 40-45. DOI: 10.6052/j.issn.1000-4750.2011.01.0018
引用本文: 赵凤群, 王忠民. 非保守力和热载荷作用下FGM梁的稳定性[J]. 工程力学, 2012, 29(10): 40-45. DOI: 10.6052/j.issn.1000-4750.2011.01.0018
ZHAO Feng-qun, WANG Zhong-min. STABILITY OF FGM BEAM UNDER ACTION OF NON-CONSERVATIVE FORCE AND THERMAL LOADS[J]. Engineering Mechanics, 2012, 29(10): 40-45. DOI: 10.6052/j.issn.1000-4750.2011.01.0018
Citation: ZHAO Feng-qun, WANG Zhong-min. STABILITY OF FGM BEAM UNDER ACTION OF NON-CONSERVATIVE FORCE AND THERMAL LOADS[J]. Engineering Mechanics, 2012, 29(10): 40-45. DOI: 10.6052/j.issn.1000-4750.2011.01.0018

非保守力和热载荷作用下FGM梁的稳定性

基金项目: 陕西省教育厅科学研究计划项目(11JK0524);西安理工大学高学历人员科研启动项目(108-210805);陕西省自然科学基金项目(2011JM1013)
详细信息
    作者简介:

    王忠民(1957―),男,陕西华县人,教授,博士,博导,从事结构动力学研究(E-mail: wangzhongm@xaut.edu.cn).

    通讯作者:

    赵凤群(1963―),女,陕西淳化人,教授,博士,从事结构振动与稳定性、微分方程数值解研究(E-mail: zhaofq@xaut.edu.cn).

  • 中图分类号: O343

STABILITY OF FGM BEAM UNDER ACTION OF NON-CONSERVATIVE FORCE AND THERMAL LOADS

  • 摘要: 研究了在热载荷和切向均布随从力作用下FGM梁的稳定性问题。假设材料常数(即弹性模量和密度)随温度及沿截面高度连续变化,且材料常数按各材料的体积分数以幂率变化,温度分布满足一维热传导方程,计算了不同梯度指标和不同温度下FGM梁的弹性模量随截面高度变化情况。基于Euler-Bernoulli梁理论,建立梁的控制微分方程,用小波微分求积法(WDQ法)求解,分析了梯度指标、温度、随从力等参数对简支FGM梁振动特性与稳定性的影响。
    Abstract: The stability of a FGM beam under the action of thermal loads and a uniformly distributed tangential follower force is analyzed. The material properties(Young’s modulus and mass density) of the beam are assumed to be varied continuously through the height direction according to a simple power-law distribution in terms of volume fraction of material constituents, and to be temperature-dependent. The temperature distribution of FGMs is assumed to be varied through the height direction following a one-dimensional steady-state heat conduction equation. The variation of Young’s modulus along the thickness of the beam for different values of graded index and temperature are calculated. The governing differential equations built on Euler-Bernoulli beam theory for the FGM beam are solved by using a WDQ method. The effect of the graded index, temperature, and follower force on vibration behaviors and stability of a simple supported non-conservative FGM beam are discussed.
  • [1]  Koizumi M. FGM activities in Japan [J]. Composites Part B, 1997, 28B: 1―4.
    [2]  Praveen G N, Reddy J N. Nonlinear transient thermo-elastic analysis of functionally graded ceramic-metal plates [J]. International Journal of Solids and Structures, 1998, 35: 4457―4476.
    [3]  Librescu L, Oh S Y, Song O. Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability [J]. Journal of Thermal Stresses, 2005, 28: 649―712.
    [4]  Bhangale R K, Ganesan N. Thermoelastic vibration and buckling analysis of functionally graded sandwich beam with constrained viscoelastic core [J]. Journal of Sound and Vibration, 2006, 295: 294―316.
    [5]  Ying J, Lu C F, Chen W Q. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations [J]. Composite Structures, 2008, 84: 209―219.
    [6]  Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges [J]. Materials and Design, 2007, 28(5): 1651―1656.
    [7]  Pradhan S C, Murmu T. Thermo-mechanical vibration of FGMs sandwich beam under variable elastic foundations using differential quadrature method [J]. Journal of Sound and Vibration, 2009, 321: 342―362.
    [8]  Ma L S, Lee D W. A further discussion of nonlinear mechanical behavior for FGM beams under in-plane thermal loading [J]. Composite Structures, 2011, 93(2): 831―842.
    [9]  赵凤群, 王忠民, 刘宏昭. 非保守功能梯度材料杆的后屈曲分析[J]. 工程力学, 2007, 24(6): 54―58.Zhao Fengqun, Wang Zhongmin, Liu Hongzhao. Post-buckling analysis of FGM beam subjected to non-conservative forces [J]. Engineering Mechanics, 2007, 24(6): 54―58. (in Chinese)
    [10]  Tanigawa Y, Akai T, Kawamura R, Oka N. Transient heat conduction and thermal stress problems of a non-homogeneous plate with temperature-dependent material properties [J]. Journal of Thermal Stresses, 1999, 19: 77―102.
    [11]  Zhao Fengqun, Wang Zhongmin, Liu Hongzhao. Thermal post-buckling analyses of functionally graded material rod [J]. Applied Mathematics and Mechanics, 2007, 28(1): 59―67.
    [12]  赵凤群, 张培茹, 张瑞平. 两点边值问题的小波配点法[J]. 计算力学学报, 2009, 26(6): 947―950, 955.Zhao Fengqun, Zhang Peiru, Zhang Ruiping. A wavelet collocation method for solving two-point boundary value problems [J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 947―950, 955. (in Chinese)
    [13]  王忠民. 弹性约束下非保守变截面杆的稳定性分析[J]. 西安理工大学学报, 1997, 13(1): 51―57.Wang Zhongmin. The stability of non-conservative non-uniform column with general elastic restraints [J]. Journal of Xi’an University of Technology, 1997, 13(1): 51―57. (in Chinese)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  20
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-10
  • 修回日期:  2011-10-08

目录

    /

    返回文章
    返回