基于虚拟裂缝模型的混凝土断裂过程区研究

卿龙邦, 李庆斌, 管俊峰, 王娟

卿龙邦, 李庆斌, 管俊峰, 王娟. 基于虚拟裂缝模型的混凝土断裂过程区研究[J]. 工程力学, 2012, 29(9): 112-116,132. DOI: 10.6052/j.issn.1000-4750.2011.01.0016
引用本文: 卿龙邦, 李庆斌, 管俊峰, 王娟. 基于虚拟裂缝模型的混凝土断裂过程区研究[J]. 工程力学, 2012, 29(9): 112-116,132. DOI: 10.6052/j.issn.1000-4750.2011.01.0016
QING Long-bang, LI Qing-bin, GUAN Jun-feng, WANG Juan. STUDY OF CONCRETE FRACTURE PROCESS ZONE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2012, 29(9): 112-116,132. DOI: 10.6052/j.issn.1000-4750.2011.01.0016
Citation: QING Long-bang, LI Qing-bin, GUAN Jun-feng, WANG Juan. STUDY OF CONCRETE FRACTURE PROCESS ZONE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2012, 29(9): 112-116,132. DOI: 10.6052/j.issn.1000-4750.2011.01.0016

基于虚拟裂缝模型的混凝土断裂过程区研究

基金项目: 国家自然科学基金项目(90715041);十一五支撑计划项目(2008BAB29B05)
详细信息
    作者简介:

    卿龙邦(1982―),男,湖北天门人,博士生,从事混凝土断裂及损伤方面的研究(E-mail: qlongbang@126.com);管俊峰(1980―),男,河南许昌人,讲师,博士,从事混凝土断裂及损伤方面的研究(E-mail: shuaipipi88@126.com);王 娟(1981―),女,河南信阳人,讲师,博士,从事混凝土材料基本理论的研究(E-mail: wangjuan@zzu.edu.cn).

    通讯作者:

    李庆斌(1964―),男,河南周口人,教授,博士,博导,从事混凝土材料与结构基本理论的研究(E-mail: qingbinli@tsinghua.edu.cn).

  • 中图分类号: TU528; O346

STUDY OF CONCRETE FRACTURE PROCESS ZONE BASED ON FICTITIOUS CRACK MODEL

  • 摘要: 利用虚拟裂缝模型对混凝土断裂过程区进行了研究.以无限大板中心拉伸裂缝模型为例,将过程区裂缝张开位移采用多项式级数形式表示,求得了断裂过程区上的位移分布和粘聚力分布.进而分析了材料参数对断裂过程区上的位移、粘聚力、断裂过程区长度以及峰值外荷载的影响.结果表明:断裂过程区上的位移和粘聚力均为非线性分布.断裂过程区长度随骨料最大粒径增大而逐渐增大,随抗压强度增大而逐渐减小.峰值外荷载随骨料最大粒径和抗压强度增大均逐渐增大.
    Abstract: Based on the fictitious crack model, fracture process of concrete is studied in this paper. Taking the tensile fracture model for the center of an infinite plate for an example, and by expressing the opening displacement in fracture process zone in a polynomial, the distributions of displacement and cohesive stress in the fracture process zone are obtained. Furthermore, effects of the material parameters on different physical variables are analyzed, including the distribution of displacement and cohesive stress, length of fracture process zone and peak load. The results show that the stress and the displacement of the fracture process zone are both in nonlinear distributions. The length of fracture process zone gradually increases with the maximum aggregate size and decreases with the compressive strength. The peak load increases with both the maximum aggregate size and the compressive strength.
  • [1] Bazant Z P. Concrete fracture models: testing andpractice [J]. Engineering Fracture Mechanics, 2002(69):165-205.  

    [2] 徐世烺, 赵国藩. 混凝土断裂力学研究[M]. 大连: 大连理工大学出版社, 1991: 38-58.Xu Shilang, Zhao Guofan. Research on fracturemechanics [M]. Dalian: Dalian University of TechnologyPress, 1991: 38-58. (in Chinese)

    [3] Muralidhara S, Raghu P B K, Eskandari H, et al. Fractureprocess zone size and true fracture energy of concreteusing acoustic emission [J]. Construction and BuildingMaterials, 2010, 24(4): 479-486.

    [4] Hillerborg A, Modeer M, Petersson P. Analysis of crackformation crack growth in concrete by means of fracturemechanics and finite elements [J]. Cement and ConcreteResearch, 1976, 6(6): 773-782.  

    [5] Jin Z H, Sun C T. Cohesive fracture model based onnecking [J]. International Journal of Fracture, 2005(134):91-108.  

    [6] Hillerborg A. Analysis of one single crack [M]. FractureMechanics of Concrete (Edited by Wittmann).Amsterdam: Elsevier Science Publishers, 1983: 223-249.

    [7] Carpinteri A, Corrado M, Paggi M. An integratedcohesive/overlapping crack model for the analysis offlexural cracking and crushing in RC beams [J].International Journal of Fracture, 2010(161): 161-173.

    [8] 李庆斌, 张楚汉, 王光纶. 用虚裂纹模型研究混凝土裂缝扩展的边界单元法[J]. 工程力学, 1993, 10(3): 9-16.Li Qingbin, Zhang Chuhan, Wang Guanglun. Boundaryelement method for propagation of crack in concreteusing fictitious crack mode [J]. Engineering Mechanics,1993, 10(3): 9-16. (in Chinese)

    [9] Planas J, Guinea G V, Elices M. Integral equationmethod for modelling cracking in concrete [M].Computational fracture mechanics in concretetechnology (Edited by Aliabadi M H, Carpinteri A),Southampton: WIT Press/Computational MechanicsPublications, 1999: 103-132.

    [10] Karihaloo B L, Abdalla H M, Xiao Q Z. Deterministicsize effect in the strength of cracked concrete structures[J] Cement and Concrete Research, 2006(36): 171-188.

    [11] Duan S J, Nakagawa K. Stress functions with finite stressconcentration at the crack tips for a central cracked panel[J]. Engineering Fracture Mechanics, 1988, 29(5): 517-526.  

    [12] Zhang W, Deng X M. Mixed-mode I/II fields around acrack with a cohesive zone ahead of the crack tip [J].Mechanics Research Communications, 2007, 34(2):172-180.  

    [13] Karihaloo B L, Xiao Q Z. Asymptotic fields at the tip ofa cohesive crack [J]. International Journal of Fracture,2008(150): 55-74.  

    [14] 林皋, 齐聪山, 周洪涛. 混凝土断裂问题的数学规划法解[J]. 土木工程学报, 1995, 28(2): 53-62.Lin Gao, Qi Congshan, Zhou Hongtao. Solving fracturemechanics problems of concrete by mathematicalprogramming approach [J]. China Civil EngineeringJournal, 1995, 28(2): 53-62. (in Chinese)

    [15] 陈升平, 余天庆, 刘祖德. 混凝土断裂过程区的闭合解[J]. 湖北工学院学报, 1997, 12(4): 64-67.Chen Shengping Yu Tianqing Liu Zude. Analyticsolution of the fracture process zone for concrete [J].Journal of Hubei Polytechnic University, 1997, 12(4):64-67. (in Chinese)

    [16] 黄达海, 宋玉普, 吴智敏. 大体积混凝土等效裂纹断裂模型研究[J]. 计算力学学报, 2000, 17(3): 293-299.Huang Dahai, Song Yupu, Wu Zhimin. Study on theequivalence crack fracture model for large volumeconcrete [J]. Chinese Journal of ComputationalMechanics, 2000, 17(3): 293-299. (in Chinese)

    [17] 王利民, 徐世烺, 赵熙强. 考虑软化效应的黏聚裂纹张开位移分析[J]. 中国科学G 辑, 2006, 36(1): 59-71.Wang Limin, Xu Shilang, Zhao Xiqiang. Analysis oncohesive crack opening displacement considering thestrain softening effect [J]. Science in China (Series G),2006, 36(1): 59-71. (in Chinese)

    [18] 卿龙邦, 李庆斌, 管俊峰. 混凝土断裂过程区长度计算方法研究[J]. 工程力学, 2012, 29(4): 197-201.Qing Longbang, Li Qingbin, Guan Junfeng.Calculatation method of the length of fracture processzone of concrete [J]. Engineering Mechanics, 2012, 29(4):197-201. (in Chinese)

    [19] Tada H, Paris P C, Irwin G R. The stress analysis ofcracks handbook [M]. New York: ASME Press, 2000:125-141.

    [20] CEB-FIP MC 90. CEB-FIP Model Code 1990 [S].London: Thomas Telford House, 1993.

    [21] Dugdale D. Yielding of steel sheets containing slits [J].Journal of the Mechanics and Physicsc Solids, 1960(8):100-108.  

    [22] Barenblatt G. The mathematical theory of equilibriumcrack in the brittle fracture [J]. Advances in AppliedMechanics, 1962(7): 55-129.

    [23] Wang W, Hsu C T T, Blackmore D. Generalizedformulation for strip yielding model with variablecohesion and its analytical solutions [J]. InternationalJournal of Solids and Structures, 2000(37): 7533-7546.  

    [24] Ghaemmaghami A, Ghaemian M. Large-scale testing onspecific fracture energy determination of dam concrete[J]. International Journal of Fracture, 2006(141): 247-254.  
计量
  • 文章访问数:  1928
  • HTML全文浏览量:  40
  • PDF下载量:  422
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-10
  • 修回日期:  2011-04-13
  • 刊出日期:  2012-09-24

目录

    /

    返回文章
    返回