INTEGRATED OPTIMIZATION DESIGN OF MATERIALS AND STRUCTURES IN CONSIDERATION OF STATIC AND DYNAMIC PERFORMANCES
-
摘要: 针对复合材料微结构的内部构型和宏观排布的可设计性,以结构基频最大和柔度最小加权系数为目标,将微结构设计和多尺度计算结合,建立了考虑静动力学特性的材料/结构一体化多目标优化设计模型,实现了相应的算法和算例.方法中引入了微观和宏观两个尺度上的独立密度变量,采用RAMP(Rational Approximation ofMaterial Properties)方法对密度进行惩罚,利用有限元超单元技术建立材料与结构的联系,通过规一化目标函数有效避免了不同性质目标函数的量级差异.通过算例,获得了静动态权重系数对结构拓扑构型和目标函数(宏观结构的柔度和基频)的影响规律.研究结果表明:该方法是有效的,可作为对轻质结构进行静动态多目标优化设计的一种新方法.
-
关键词:
- 复合材料 /
- 拓扑优化 /
- 多目标 /
- 静动力学特性 /
- 材料/结构一体化设计
Abstract: It is well known that structural behaviors of composites are dictated by micro configuration and macro arrangement of microstructure. A multi-objectives optimization design model integrating materials and structures in consideration of static and dynamic performances for periodical composites is presented and related numerical experiments are carried out. In the model, the optimization objects are to maximize the structure fundamental frequency and minimize the structure compliance. RAMP (Rational Approximation of Material Properties) is adopted to ensure clear topologies in both macro and micro scales and design variables for macrostructure and microstructures are defined separately and integrated into one system by using the super-element technique. In addition, to improve the smoothness of the objective function and avoid the singularity of numerical computation, the weighted objection function is normalized. On the basis of the numerical experiments, the effects of the weighted coefficient of the static and dynamic optimization on the topology form and objective values (the structure fundamental frequency and compliance) are investigated. The results indicate that the proposed method is effective and can be used as an innovative design concept for lightweight structures. -
-
[1] Bensoussan A, Lions J L, Papanicolaou G. Asymptoticanalysis for periodic structures [M]. Amsterdam: NorthHolland, 1978. [2] Sigmund O. Materials with prescribed constitutiveparameters: an inverse homogenization problem [J].International Journal of Solids and Structure, 1994,31(17): 2313-2329. [3] Sigmund O. Tailoring materials with prescribedconstitutive parameters [J]. Mechanics of Material, 1995,20: 351-368. [4] Pedersen P. On optimal shapes in materials and structure[J]. Structural and Multidisciplinary Optimization, 2000,19: 169-182. [5] Rodrigues H, Guedes J M, Bendsoe M P. Hierarchicaloptimization of material and structure [J]. Structural andMultidisciplinary Optimization, 2002, 24: 1-10. [6] 张卫红, 孙士平. 多孔材料/结构尺度关联的一体化拓扑优化技术[J]. 力学学报, 2006, 38(4): 522-529.Zhang Weihong, Sun Shiping. Integrated design ofporous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and AppliedMechanics, 2006, 38(4): 522-529. (in Chinese) [7] Sutherland L S, Shenoi R A, Lewis S M. Size and scaleeffects in composites-I. Literature review [J]. CompositesScience and Technology, 1999, 59: 209-220. [8] Pecullan S, Gibiansky L V, Torquato S. Scale effects onthe elastic behavior of periodic and hierarchicaltwo-dimensional composites [J]. Journal of theMechanics and Physics of Solids, 1999, 47: 1509-1542. [9] 阎军. 超轻金属结构与材料多尺度分析与协同优化设计[D]. 大连: 大连理工大学, 2007.Yan Jun. Multiscale analysis and concurrent optimizationfor ultra-light metal structures and materials [D]. Dalian:Dalian University of Technology, 2007. (in Chinese) [10] Sigmund O. Morphology-based black and white filtersfor topology optimization [J]. Structural andMultidisciplinary Optimization, 2007, 33: 401-424.
计量
- 文章访问数: 1505
- HTML全文浏览量: 6
- PDF下载量: 318