向量式有限元在索穹顶静力分析中的应用

朱明亮, 董石麟

朱明亮, 董石麟. 向量式有限元在索穹顶静力分析中的应用[J]. 工程力学, 2012, 29(8): 236-242. DOI: 10.6052/j.issn.1000-4750.2010.12.0874
引用本文: 朱明亮, 董石麟. 向量式有限元在索穹顶静力分析中的应用[J]. 工程力学, 2012, 29(8): 236-242. DOI: 10.6052/j.issn.1000-4750.2010.12.0874
ZHU Ming-liang, DONG Shi-lin. APPLICATION OF VECTOR FORM INTRINSIC FINITE ELEMENT METHOD TO STATIC ANALYSIS OF CABLE DOMES[J]. Engineering Mechanics, 2012, 29(8): 236-242. DOI: 10.6052/j.issn.1000-4750.2010.12.0874
Citation: ZHU Ming-liang, DONG Shi-lin. APPLICATION OF VECTOR FORM INTRINSIC FINITE ELEMENT METHOD TO STATIC ANALYSIS OF CABLE DOMES[J]. Engineering Mechanics, 2012, 29(8): 236-242. DOI: 10.6052/j.issn.1000-4750.2010.12.0874

向量式有限元在索穹顶静力分析中的应用

基金项目: 国家自然科学基金重点项目(50638050)
详细信息
    作者简介:

    董石麟(1932―),男,浙江杭州人,教授,博导,中国工程院院士,主要从事空间结构研究(E-mail: kjjgzz@163.com).

    通讯作者:

    朱明亮(1982―),男,江西崇义人,博士生,主要从事空间结构研究(E-mail: zhumingliang2006@gmail.com).

  • 中图分类号: TU394

APPLICATION OF VECTOR FORM INTRINSIC FINITE ELEMENT METHOD TO STATIC ANALYSIS OF CABLE DOMES

  • 摘要: 索穹顶结构是一种由预应力拉索与竖杆组成的高效柔性空间结构,易发生较大位移,拉索可能出现松弛现象。该文采用向量式有限元进行了索穹顶的静力分析。向量式有限元是一种向量力学与数值计算相结合的分析方法,不同于传统分析力学方法和其他数值计算方法。向量式有限元基于运动方程求解,不需求解非线性方程组及刚度矩阵,尤其适合于发生刚体位移和几何大变形的结构或机构求解。该文首先介绍了向量式有限元的基本原理,推导了预应力索单元的求解公式,最后采用自编向量式有限元程序,分析了一个单摆模型和一个索穹顶结构模型。结果表明:向量式有限元应用于索穹顶静力分析是可行而且可靠的,在传统有限元计算难以收敛的情况下仍然可以对结构进行精确的非线性分析,为索穹顶的非线性分析提供了一种新的方法和手段。
    Abstract: A cable dome is a new type of efficient spatial structures, which mainly consists of cables and struts. A large displacement even cable slack is easy to happen. In this paper, the static behavior of a cable dome is studied by the Vector Form Intrinsic Finite Element (VFIFE). VFIFE is a recently proposed method based on the combination of the vector mechanics and numerical calculations, different from traditional analysis mechanics and other numerical computational methods. VFIFE derives from a kinematic equation. There is no need to solve any nonlinear equations by calculating the stiffness matrix, very helpful in the analysis of large rigid body motions and large geometrical changes. The fundamentals of this method are summarized first. And the internal force of a cable element is conducted to model the cable dome. Then a simple pendulum and a cable dome are analyzed with the Matlab language program. Numerical results show that VFIFE is useful and reliable in case of analyzing the cable dome structure. Hence, a new approach of nonlinear analyses is provided when the traditional finite element method is hard to converge.
  • [1]  唐建民, 沈祖炎. 索穹顶结构的静力性状分析[J]. 空间结构, 1998, 4(3): 17―25.
    Tang Jianmin, Shen Zuyan. The analysis of static mechanical properties for cable domes [J]. Spatial Structures, 1998, 4(3): 17―25. (in Chinese)
    [2]  袁行飞, 董石麟. 索穹顶结构有限元分析及试验研究[J]. 浙江大学学报(工学版), 2004, 38(5): 586―592.
    Yuan Xingfei, Dong Shilin. Finite element analysis and experimental research on cable domes [J]. Journal of Zhejiang University (Engineering Science), 2004, 38(5): 586―592. (in Chinese)
    [3]  唐建民, 钱若军, 蔡新. 索穹顶结构非线性有限元分析[J]. 空间结构, 1996, 2(1): 12―17.
    Tang Jianmin, Qian Ruojun, Cai Xin. A nonlinear finite element method for analyzing cable domes [J]. Spatial Structures, 1996, 2(1): 12―17. (in Chinese)
    [4]  唐建民, 卓家寿. 拉索穹顶结构非线性分析的混合有限元增量法[J]. 计算力学学报, 2000, 17(1): 81―88.
    Tang Jianmin, Zhuo Jiashou. A mixed finite element incremental method for spatial nonlinear analysis of cable dome structures [J]. Journal of Computational Mechanics, 2000, 17(1): 81―88. (in Chinese)
    [5]  唐建民, 沈祖炎, 钱若军. 索穹顶结构非线性分析的曲线索单元有限元法[J]. 同济大学学报, 1996, 24(1): 6―10.
    Tang Jianmin, Shen Zuyan, Qian Ruojun. Finite element method with curved cable element for the nonlinear analysis of cable domes [J]. Journal of Tongji University, 1996, 24(1): 6―10. (in Chinese)
    [6]  沈祖炎, 汤荣伟, 赵宪忠. 基于悬链线元的索穹顶形状精确确定方法[J]. 同济大学学报, 2006, 34(1): 1―6.
    Shen Zuyan, Tang Rongwei, Zhao Xianzhong. Accurate form-finding method for cable dome based on catenary element [J]. Journal of Tongji University, 2006, 34(1): 1―6. (in Chinese)
    [7]  丁承先, 王仲宇, 吴东岳, 等. 运动解析与向量式有限元[R]. 中国, 台湾: 中央大学工学院桥梁工程研究中心, 2007.
    Ding Chengxian, Wang Zhongyu, Wu Dongyue, et al. Motion analysis and vector form intrinsic finite element [R]. China, Taiwan: Bridge Engineering Research Center of Central University, 2007. (in Chinese)
    [8]  Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane frame element [J]. Journal of Mechanics, 2004, 20(2): 113―122.
    [9]  Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part II. Plane solid elements [J]. Journal of Mechanics, 2004, 20(2): 123―132.
    [10]  Shih C, Wang Y K, Ting E C. Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples [J]. Journal of Mechanics, 2004, 20(2): 133―143.
    [11]  向新岸. 张拉索膜结构的理论研究及其在上海世博轴中的应用[D]. 杭州: 浙江大学, 2010.
    Xiang Xin’an. Theoretical research of cable-membrane structures and application on the EXPO axis project in Shanghai [D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
    [12]  丁承先, 王仲宇. 向量式固体力学[R]. 中国, 台湾: 中央大学土木工程学系, 2008.
    Ding Chengxian, Wang Zhongyu. Vector mechanics of structures and solids [R]. China, Taiwan: Department of Civil Engineering of Central University, 2008. (in Chinese)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  34
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-02
  • 修回日期:  2011-05-04

目录

    /

    返回文章
    返回