基于结点6自由度的分裂导线有限元模型

晏致涛, 黄静文, 李正良

晏致涛, 黄静文, 李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学, 2012, 29(8): 325-332. DOI: 10.6052/j.issn.1000-4750.2010.08.0626
引用本文: 晏致涛, 黄静文, 李正良. 基于结点6自由度的分裂导线有限元模型[J]. 工程力学, 2012, 29(8): 325-332. DOI: 10.6052/j.issn.1000-4750.2010.08.0626
YAN Zhi-tao, HUANG Jing-wen, LI Zheng-liang. FINITE ELEMENT MODEL OF BUNDLE LINES BASED ON 6-DOF NODE[J]. Engineering Mechanics, 2012, 29(8): 325-332. DOI: 10.6052/j.issn.1000-4750.2010.08.0626
Citation: YAN Zhi-tao, HUANG Jing-wen, LI Zheng-liang. FINITE ELEMENT MODEL OF BUNDLE LINES BASED ON 6-DOF NODE[J]. Engineering Mechanics, 2012, 29(8): 325-332. DOI: 10.6052/j.issn.1000-4750.2010.08.0626

基于结点6自由度的分裂导线有限元模型

基金项目: 中央高校基本科研业务费项目(CDJZR11200015)
国家自然科学基金项目(51178489)
详细信息
    作者简介:

    黄静文(1984―),女,浙江嘉兴人,硕士生,从事结构风工程研究(E-mail: 361607147@qq.com);李正良(1963―),男,江苏江阴人,教授,博士,主要从事工程力学研究(E-mail: lizhengl@hotmail.com).

    通讯作者:

    晏致涛(1978―),男,江西南昌人,副教授,博士,主要从事结构工程研究(E-mail: yanzhitao@cqu.edu.cn).

  • 中图分类号: TB122

FINITE ELEMENT MODEL OF BUNDLE LINES BASED ON 6-DOF NODE

  • 摘要: 大跨越输电线路分裂导线较单导线更容易发生舞动现象,基于空间曲梁理论,建立了结点6自由度的导线有限元模型。假定间隔棒为刚性体,根据位移协调条件,建立了4分裂导线的有限元模型。通过虚功原理建立静力有限元方程,采用Newton-Raphson迭代法进行静力非线性求解。算例表明:采用曲梁模型研究输电线的平动位移是准确的。由于考虑了平动与扭转的耦合作用,扭转角的计算更加精确。输电线抗弯刚度对扭转角也有较大影响。分裂导线的参数分析表明,弧垂、分裂间距、边界条件等对抗扭刚度均有较大的影响,间隔棒的数量不能显著提高导线的抗扭刚度。
    Abstract: Long span transmission bundle lines will more easily suffer galloping phenomenon than a single wire. Based on space-curved-beam theory, the finite element model based on 6-DOF node is built to simulate a transmission line. The spacers are assumed as a rigid body,and the finite element model of 4-bundle conductors is established according to the displacement compatibility conditions. The static finite element equation is built through the virtual work principle and solved by the Newton-Raphson iterative method. The results of examples show that the curved beam model of a transmission line is accurate to calculate the translational displacement. Considering the coupling of the translational and torsional deformation, torsion angle calculations are more precise, and the bending stiffness of the transmission line will also affect the torsional angle. The results for the parameter analysis of bundle conductors show that sags, split spacings, spacers, and boundary conditions have more great influence on the torsional stiffness, whileas the number of spacers cannot significantly increase conductor torsional stiffness.
  • [1]  Irvine H M. Cable structures [M]. New York: MIT Press, 1981.
    [2]  Desai Y M, Yu P, Popplewell N, et al. Finite element modeling of transmission line galloping [J]. Computers and Structures, 1995, 57(3): 407―420.
    [3]  Desai Y M, Yu P, Shan A H, Popplewell N. Perturbation-    based finite element analyses of transmission lines galloping [J]. Journal of Sound and Vibration, 1996, 191(4): 469―489.
    [4]  McConnell K G, Chang C N. A study of the axial-    torsional coupling effect on a sagged transmission line [J]. Experimental Mechanics, 1986, 26(4): 324―329.
    [5]  Luongo Angelo, Daniele Zulli, Giuseppe Piccardo. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables [J]. Journal of Sound and Vibration, 2008, 315: 375―393.
    [6]  Luongo Angelo, Daniele Zulli, Giuseppe Piccardo. On the effect of twist angle on nonlinear galloping of suspended cables [J]. Computers and Structures, 2009, 87(15/16): 1―12.
    [7]  何锃, 赵高玉. 大跨越分裂导线的静力计算[J]. 中国电机工程学报, 2001, 21(11): 34―37.
    He Zeng, Zhao Gaoyu. Static analysis and computation of long-span multi-conductor transmission lines [J]. Proceeding of the Chinese Society for Electrical Engineeing, 2001, 21(11): 34―37. (in Chinese)
    [8]  白海峰, 李宏男. 分裂式覆冰导线横风驰振响应研究[J]. 振动工程学报, 2008, 21(3): 61―70.
    Bai Haifeng, Li Hongnan. Crosswind-induced galloping of iced-bundle conductors [J]. Journal of Vibration Engineering, 2008, 21(3): 61―70. (in Chinese)
    [9]  Wang Jianwei, Lilien Jean-Louis. A new theory for torsional stiffness of mulit-span bundle overhead transmission lines [J]. IEEE Transaction on Power Delivery, 1998, 13(4): 1405―1411.
    [10]  Keutgen Renaud, Lilien Jean-Louis, Teruhiro Yukino. Transmission line torsional stiffness. Confrontation of field-tests line and finite element simulations [J]. IEEE Transaction on Power Delivery, 1999, 14(2): 567―578.
    [11]  Zhang Q, Popplewell N, Shan A H. Galloping of bundle conductor [J]. Journal of Sound and Vibration, 2000, 234(1): 115―134.
    [12]  Zhu Z H, Meguid S A. Analysis of three-dimensional locking-free curved beam element [J]. International Journal of Computational Engineering Science, 2004, 5(3): 535―556.
    [13]  Zhu Z H, Meguid S A. Vibration analysis of a new curved beam element [J]. Journal of Sound and Vibration, 2008, 309(1/2): 86―95.
    [14]  Choi J, Lim J. General curved beam element based on the assumed strain field [J]. Computers and Structures, 1995, 55(3): 379―386.
  • 期刊类型引用(4)

    1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 . 本站查看
    2. 唐贞云,王志宇,杜修力. 时域稳定的基础频响连续有理近似参数识别方法. 工程力学. 2022(04): 29-38 . 本站查看
    3. 张帅,程晓辉,王天麟. 非等向固结砂土极小应变刚度的超弹性模型. 工程力学. 2020(01): 145-151 . 本站查看
    4. 巴振宁,张家玮,梁建文,吴孟桃. 地震波斜入射下层状TI饱和场地地震反应分析. 工程力学. 2020(05): 166-177 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  293
  • HTML全文浏览量:  25
  • PDF下载量:  37
  • 被引次数: 5
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2011-02-20

目录

    /

    返回文章
    返回