自重对混凝土三点弯曲梁断裂性能的影响

尹阳阳1,胡少伟2,3,王宇航2

(1.河海大学土木与交通学院,南京 210098;2.重庆大学土木工程学院,重庆 400045;3.南京水利科学研究院,南京 210024)

摘 要:自重对三点弯曲梁试件的断裂性能有重要影响,而以往基于三点弯曲梁研究混凝土的断裂性能时,很少考虑自重引起的试件初始裂缝张口位移(CMODini)的影响。为了研究CMODini对三点弯曲梁断裂性能的影响规律,给出了CMODini及考虑CMODini影响的有效裂缝长度(ac)和失稳断裂韧度的计算公式,并用不同试件尺寸及不同初始缝高比的三点弯曲梁试验数据进行了对比分析。结果表明:当试件初始缝高比为0.4时,CMODini受试件尺寸影响较小,即使试件尺寸达到2200 mm×550 mm×240 mm时,自重对其的影响均小于5%。CMODini受初始缝高比的影响较大,且随着初始缝高比的增大而增大,对于尺寸为1143 mm×305 mm×76 mm,初始缝高比为0.818的三点弯曲梁试件,自重对其的影响分别为24.26%、1.73%和17.31%。可见,当三点弯曲梁试件尺寸及初始缝高比均较大时应该考虑自重引起的CMODini的影响。

关键词:混凝土;自重;三点弯曲梁;初始裂缝张口位移;失稳断裂韧度;双K断裂模型

混凝土断裂韧度作为混凝土材料重要的性能参数,已受到了越来越多的关注。而混凝土断裂韧度的尺寸效应问题,由于关系到试验测得的断裂参数能否用于实际工程,受到了广大学者的重视[1-3],较著名的是Bažant等[4-7]提出的尺寸效应模型和Hu等[8-19]提出的边界效应模型。目前,主要采用三点弯曲梁和楔入劈拉两种试件形式测混凝土的断裂韧度。为了得到与试件尺寸无关的断裂参数,很多学者采用了大尺寸三点弯曲梁试件[20-24],其中最大的试件长度达到了2.4 m,自重最大分别占到了起裂荷载和失稳荷载的72.4%和42.7%。显然,随着试件尺寸的增大,试件自重的影响逐渐增大。而目前广泛采用的楔入劈拉试件因支座位于试件的四分点处,从而抵消了试件自重的影响[25-30],但三点弯曲梁形式的试件则无法避免试件自重的影响[31]。随着全级配混凝土及湿筛混凝土断裂性能的研究越来越多[32-35],试件尺寸因骨料粒径较大而相应增大,这就导致自重对试件断裂性能的影响越来越大。同样,当试件的初始缝高比增大时[36-37],其跨中裂缝截面抗弯刚度因裂缝削弱较多,试件自重的影响也增大。文献[37]指出,对于尺寸为320 mm×80 mm×40 mm亚临界扩展长度为零,当初始缝高比为0.9时,试件极易在自重的作用下断裂,而导致测不到数据。为了减小自重对试件断裂性能的影响,很多学者采用了小跨高比的试件[38-40]。徐世烺等[41-42]指出,计算三点弯曲梁的断裂韧度时要考虑自重引起的初始裂缝张口位移的影响;Kumar等[43]在数值模拟中也指出裂缝的张口位移需要考虑自重引起的初始裂缝张口位移。但应该说上述文献的考虑是很不充分的,由此可见,作为一种被广泛采用的试件形式,有必要对试件自重的影响进行系统地研究。

自重对三点弯梁断裂性能的影响主要表现在两方面:① 对起裂荷载及失稳荷载的影响,即测得的起裂荷载和失稳荷载中应加上自重影响项;② 对试件临界张口位移值的影响,即测得临界裂缝张口位移中应加上自重作用下试件的初始裂缝张口位移值。如图1所示。

对影响①学者们已经考虑,但对于影响②则很少考虑。随着试件尺寸及初始缝高比的增大,这种影响也将逐渐增大。基于以上考虑,本文给出了考虑自重影响(包含影响①和影响②)的三点弯曲梁断裂参数计算公式,并根据试验实测数据对比分析了仅考虑影响①与分别考虑两种影响的计算结果。

图1 试件自重对初始张口位移的影响
Fig.1 Influence of self-weight on CMODini

1 公式改进

《水工混凝土断裂试验规 程》(DL/T 5332―2005) [44](下简称《规程》)给出了如下所示的混凝土断裂韧度的计算公式:

失稳断裂韧度:

式中:为失稳断裂韧度;Pmax为最大荷载,即试件P-CMOD曲线的最高点所对应的荷载;W为试件支座间的自重,用试件总重量按S/L比折算;S为试件两支座间的跨度;L为试件总长度;ac对应的是试件临界失稳时裂缝长度,即有效裂缝长度;t为试件厚度;h为试件高度。

其中,ac应按下式计算:

式中:h0为钢片刀口厚度;E为计算弹性模量;CMODc为临界裂缝张口位移,即试件P-CMOD曲线中Pmax所对应的CMOD值。

E按下式计算:

式中:a0为初始裂缝长度;Ci为试件初始CMOD/P值;由P-CMOD曲线的上升段之直线段上任一点的CMODP计算。

起裂断裂韧度:

式中:为起裂断裂韧度;Pini为起裂荷载;即试件P-CMOD曲线的上升段中从直线段转变为曲线段的转折点所对应的荷载。

由式(1)、式(5)可知,《规程》中给出的计算试件断裂韧度的公式仅考虑了影响①,即仅考虑了自重对起裂荷载及失稳荷载的影响。由式(5)可知,起裂断裂韧度的确定仅与起裂荷载和初始裂缝长度有关,故不考虑影响②。但由式(1)可知,失稳断裂韧度值与影响②有关,但现有的公式中却没有考虑影响②,即没有考虑自重引起的初始裂缝张口位移对试件临界裂缝张口位移值的影响;若考虑了影响②,由式(3)可知将使有效裂缝长度ac增大,从而由式(1)知失稳断裂韧度也将增大。对大尺寸及大初始缝高比的混凝土三点弯曲梁试件,影响②的作用将更加明显。因此,为了得到试件真实的断裂参数,将影响②考虑进去是十分必要的。

为了考虑自重对试件临界裂缝张口位移值的影响,因自重作用下试件的P-CMOD曲线处于初始线性段,故在此假定自重作用下试件的CMOD值满足P-CMOD曲线的初始线性段,这样仅需用测得P-CMOD曲线初始线性段的斜率,再乘上据跨中弯矩相等的原则将试件自重(即试件跨度范围内的自重)等效为的跨中集中荷载,即W/2,即可得自重作用下的CMODini值,即:

从而考虑影响②后,式(2)变为:

将式(7)替换式(1)中的ac即可得考虑试件自重对初始张口位移影响的失稳断裂韧度即:

应该指出,式(6)的成立仅需满足“自重作用下试件的CMOD值满足P-CMOD曲线的初始线性段”这一假定,而由于自重作用下的三点弯曲梁试件一般均处于线弹性状态,所以上述假定对于大尺寸及小尺寸的三点弯曲梁试件均是成立的。因此,式(6)、式(7)及式(8)不仅适用于小尺寸三点弯曲梁试件,同时也适用于采用大尺寸的三点弯曲梁试件研究混凝土的断裂性能的情形。

2 试验验证

由式(6)知,自重对CMOD的影响与试件初始CMOD/P值即初始裂缝张开柔度Ci紧密相关,而Ci受试件尺寸及初始缝高比的影响。因此,为了验证自重对试件初始张口位移、有效裂缝长度及失稳断裂韧度的影响,本文主要从不同试件尺寸及不同初始缝高比的标准三点弯曲梁试件进行了对比分析。

2.1 不同试件尺寸

为了研究随着试件尺寸增大而增大的自重对三点弯曲梁断裂性能的影响,参考文献[20]中的试验数据,选取骨料分别为小骨料一级配,最大粒径20 mm和大骨料原级配,最大粒径80 mm及湿筛二级配(原三级配),最大粒径为40 mm的不同尺寸试件,试件跨高比为4,小骨料一级配试件厚度为120 mm,其他试件厚度均为240 mm。具体试件尺寸、配合比及材料参数可参考文献[20],这里仅给出用改进的公式及按原《规程》中公式计算所得不同试件尺寸的断裂参数结果见表1,且仅给出了每组试件的平均值。

表1 断裂参数计算结果
Table 1 Calculated results of fracture parameters

试件编号 CMODc/μm CMODini/μm C C MM OO D D ac/mm *ini c images/BZ_59_945_465_979_533.png(%)a/mm c aa a*cc c-images/BZ_59_1517_460_1556_539.png(%)K/un IC(MPa·images/BZ_59_1722_505_1771_541.png)K/un*IC(MPa·images/BZ_59_1922_505_1971_541.png)KK K un*un ICIC un IC-images/BZ_59_2160_460_2199_539.png(%)SL 2 50.49 0.36 0.71 52.389 52.515 0.24 1.249 1.255 0.48 SL 3 68.12 0.70 1.02 78.150 78.417 0.34 1.590 1.601 0.69 SL 4 67.99 1.13 1.66 100.911 101.494 0.58 1.579 1.596 1.08 SL 5 86.34 2.46 2.85 153.150 154.633 0.97 1.703 1.734 1.82 SL 6 88.73 4.23 4.77 193.685 197.027 1.73 1.733 1.783 2.89 SL 7 123.03 7.10 5.77 255.533 260.449 1.92 1.917 1.987 3.65 SL 43 128.11 4.93 3.85 226.796 229.468 1.18 1.75 1.797 2.69 SL 44 131.36 5.95 4.53 245.189 248.638 1.41 1.883 1.941 3.08 SL 45 168.39 7.93 4.71 282.490 286.352 1.37 2.06 2.128 3.30 SL 46 157.39 9.05 5.75 305.395 310.645 1.72 2.013 2.093 3.97 SL 47 83.48 1.24 1.49 106.738 107.248 0.48 1.653 1.669 0.97 SL 48 79.55 1.75 2.20 127.422 128.380 0.75 1.671 1.695 1.44 SL 49 90.21 2.53 2.80 151.201 152.706 1.00 1.738 1.770 1.84 SL 50 81.35 4.29 5.27 199.406 203.037 1.82 1.515 1.565 3.30

因有效裂缝长度反映了混凝土的非线性断裂性能,失稳断裂韧度是工程上普遍关心的判断裂缝是否稳定的参数,而临界张口位移与二者紧密相关,故对上述不同骨料情况,分别用来反映自重的影响,图2给出了自重对小骨料一级配、大骨料原级配及湿筛二级配(原三级配)的标准三点弯曲梁试件的影响随试件尺寸变化的关系曲线图。

图2 自重对不同骨料类型试件CMODiniac的影响随试件尺寸变化的关系曲线
Fig.2 Variation of influence of self-weight on CMODini, ac andof different aggregate types with specimen sizes

由图2可知,对于小骨料一级配、大骨料原级配及湿筛二级配(原三级配)混凝土,当试件高度分别从100 mm增大至500 mm、从400 mm增大至550 mm及从200 mm增至400 mm时,即对应的试件跨度分别从400 mm增大至2000 mm、从1600 mm增大至2200 mm及从800 mm增至1600 mm时,自重对的影响均逐渐增强,但可认为均小于5%。分析原因可知,自重和初始裂缝张开柔度Ci是重要的断裂参数影响因素,而自重随着试件尺寸的增大而增大,由式(6)可知CMODini增大,又由式(7)和式(8)可得对的影响也增大,但由于试件的初始缝高比均为0.4,而随着试件尺寸的增大,跨中裂缝截面的抗弯惯性矩也在增大,并且跨中裂缝截面的抗弯惯性矩与韧带高度(h-a0)呈三次方关系,故减弱了随试件尺寸增大而增大的CMODini。考虑到影响值均小于5%,故对初始缝高比为0.4的三点弯曲梁,即使试件尺寸达到2200 mm×550 mm×240 mm时,仍可忽略自重引起的CMODini的影响。

2.2 不同初始缝高比

选取文献[36]中的试验数据,其材料配合比为水泥:砂:石子:水=1∶2.468∶3.585∶0.50,B、C系列试件圆柱体抗压强度分别为53.1 MPa和54.4 MPa,弹性模量分别为38.4 GPa和39.3 GPa。B系列试件尺寸为s×h×t=762 mm×203 mm×76 mm,C系列试件尺寸为s×h×t=1143 mm×305 mm×76 mm,其中,B26、B42和B43由于数据离散性较大而舍去。虽然试件的跨高比h/t=3.75,不严格等于4,但由文献[36,45-48]中的结果,可知这种影响是可以接受的。应该指出,本文所用的公式与文献[36]中的不完全相同,故本文计算未考虑影响②的试件断裂参数采用《规程》中公式。还应指出的是,由于文献中的初始缝高比很不统一,为了便于比较,分别按0.3~0.4、0.4~0.5、0.5~0.6、0.6~0.7及0.7~0.8进行了取平均,并将初始缝高比分别为0.295和0.813的B16及B13试件分别归入0.3~0.4和0.7~0.8组。由于篇幅有限,各试件详细的计算参数如Ci及最大荷载等,可见文献[36],这里仅给出B、C系列试件的计算结果,分别列于表2、表3。

表2 B系列试件断裂参数计算结果
Table 2 Calculated results of fracture parameters of B series

试件编号a K/CC MM OO D D ac/mm*un ICimages/BZ_60_1040_1397_1062_1464.png0*cc c h CMODc/μm CMODini/μm ini c(%)a/mm c aa a-images/BZ_60_1530_1391_1556_1470.png(%)(MPa·images/BZ_60_1732_1434_1782_1470.png)K/un*IC(MPa·images/BZ_60_1935_1434_1984_1470.png)KK K un*un ICIC un IC-images/BZ_60_2178_1391_2204_1470.png(%)B16 0.295 44 0.59 1.34 81.51382.017 0.62 1.294 1.302 0.62 B4 0.31 43.4 0.62 1.43 82.17582.712 0.65 1.266 1.275 0.71 B1 0.325 45.9 0.87 1.90 84.89585.603 0.83 1.294 1.307 1.00 B17 0.345 53.3 0.78 1.46 93.00393.543 0.58 1.361 1.372 0.81 B33 0.353 64 0.81 1.27 102.188102.6440.45 1.467 1.477 0.68 B15 0.356 43.1 0.84 1.95 87.84 88.751 1.04 1.201 1.213 1.00均值 0.331 49.0 0.75 1.53 88.60289.212 0.69 1.319 1.325 0.45 B36 0.413 62.8 1.12 1.78 104.812105.4460.60 1.399 1.413 1.00 B3 0.424 51.1 1.19 2.33 97.67798.523 0.87 1.239 1.255 1.29 B31 0.433 82.8 1.25 1.51 111.195111.7180.47 1.707 1.722 0.88 B37 0.436 73.8 1.28 1.73 118.470119.0760.51 1.572 1.588 1.02 B20 0.445 61.4 1.31 2.13 105.856106.6100.71 1.353 1.370 1.26 B18 0.459 65.5 1.45 2.21 109.307110.0770.70 1.388 1.406 1.30 B40 0.472 80.8 1.54 1.91 118.480119.1110.53 1.542 1.560 1.17 B19 0.475 58 1.59 2.74 106.184107.1480.91 1.276 1.296 1.57均值 0.446 67.0 1.34 2.00 108.998109.7140.66 1.437 1.451 0.97 B45 0.528 80 2.18 2.73 121.834122.4390.50 1.495 1.520 1.67 B5 0.543 89.5 2.29 2.56 127.565128.3550.62 1.549 1.574 1.61 B34 0.56 90.3 2.53 2.80 135.446136.2480.59 1.442 1.469 1.87 B44 0.571 95.5 2.84 2.97 130.892131.7790.68 1.593 1.623 1.88 B39 0.588 87.8 2.74 3.12 134.097135.0000.67 1.423 1.452 2.04均值 0.558 88.6 2.51 2.83 129.967130.7640.61 1.503 1.528 1.66 B25 0.6 94 3.30 3.51 133.389134.4110.77 1.530 1.565 2.29 B21 0.613 86.8 3.49 4.02 134.811135.9600.85 1.398 1.435 2.65 B22 0.618 107.4 3.61 3.36 140.855141.7570.64 1.610 1.646 2.24 B38 0.619 100 3.61 3.61 137.867138.8670.73 1.551 1.588 2.39 B8 0.623 80 3.73 4.66 135.216136.5380.98 1.289 1.329 3.10 B7 0.636 89.4 4.05 4.53 138.129139.3740.90 1.391 1.433 3.02 B10 0.643 77.4 4.23 5.47 137.310138.8171.10 1.225 1.269 3.59 B24 0.654 86.6 4.55 5.25 140.765142.1590.99 1.316 1.362 3.50 B32 0.663 101.5 4.85 4.78 143.013144.2490.86 1.494 1.542 3.21 B9 0.698 92.8 6.22 6.70 149.169150.7411.05 1.295 1.355 4.63均值 0.637 91.6 4.16 4.54 139.052140.2870.89 1.412 1.452 2.83

续表

试件编号a h CMODc/μm CMODini/μm 0 CC MM OO D Dac/mm*ini c images/BZ_61_1039_387_1073_455.png(%)a/mm c aa a*cc c-images/BZ_61_1530_381_1556_460.png(%)K/un IC(MPa·images/BZ_61_1734_427_1784_462.png)K/un*IC(MPa·images/BZ_61_1932_427_1981_462.png)KK K un*un ICIC un IC-images/BZ_61_2169_381_2195_460.png(%)B41 0.705 158.5 6.58 4.15 161.318162.1120.49 1.881 1.936 2.92 B28 0.723 141.5 7.59 5.36 160.577161.6110.64 1.708 1.773 3.81 B30 0.731 145.5 8.09 5.56 162.734163.7560.63 1.715 1.783 3.97 B29 0.742 171.1 8.85 5.17 168.966169.7840.48 1.867 1.937 3.75 B35 0.742 107.8 8.85 8.21 164.084165.5210.88 1.300 1.376 5.85 B27 0.751 130.5 9.70 7.43 162.013163.3840.85 1.566 1.649 5.30 B11 0.771 116.6 11.45 9.82 163.772165.4861.05 1.395 1.493 7.03 B12 0.771 120.6 11.45 9.49 166.113167.6830.95 1.410 1.505 6.74 B13 0.813 130.2 17.54 13.47 174.134175.8590.99 1.423 1.562 9.77均值 0.750 135.8 10.01 7.37 164.857166.1330.77 1.584 1.668 5.30

表3 C系列试件断裂参数计算结果
Table 3 Calculated results of fracture parameters of C series

试件编号a K/CC MM OO D Dac/mm*h CMODc/μm CMODini/μm images/BZ_61_1039_1134_1061_1202.png0*ini c(%)a/mm cc c un IC-c aa aimages/BZ_61_1530_1128_1556_1208.png(%)(MPa·images/BZ_61_1734_1174_1784_1209.png)K/un*IC(MPa·images/BZ_61_1929_1174_1978_1209.png)KK K un*un ICIC un IC-images/BZ_61_2159_1128_2184_1208.png(%)C32 0.337 72.2 1.61 2.23 136.582137.8040.89 1.628 1.647 1.17 C23 0.364 64 1.86 2.91 142.651144.2241.10 1.387 1.409 1.59 C22 0.366 68.4 1.88 2.75 132.93134.4351.13 1.589 1.612 1.45 C1 0.387 100.4 2.10 2.09 162.333163.4200.67 1.851 1.873 1.19均值 0.364 76.3 1.86 2.44 144.368144.9710.94 1.619 1.635 0.99 C24 0.41 64.4 2.38 3.70 141.987143.9821.41 1.402 1.430 2.00 C2 0.421 106.8 2.52 2.36 169.589170.7840.70 1.866 1.893 1.45 C3 0.424 96 2.57 2.68 165.619166.9910.83 1.733 1.761 1.62 C15 0.44 99.4 2.75 2.77 176.701178.0600.77 1.662 1.690 1.68 C21 0.449 82.8 2.94 3.55 157.828159.6821.17 1.590 1.622 2.01 C4 0.462 98.8 3.15 3.19 169.509171.1160.95 1.734 1.767 1.90 C20 0.488 96.4 3.64 3.78 177.496179.3341.04 1.607 1.644 2.30 C16 0.491 120.3 3.70 3.08 184.321185.7770.79 1.892 1.929 1.96 C6 0.498 108.5 3.87 3.57 184.701186.3820.91 1.713 1.751 2.22均值 0.454 97.0 3.06 3.15 170.389171.3450.94 1.694 1.721 1.59 C26 0.513 76 4.20 5.53 169.998172.7421.61 1.351 1.395 3.26 C5 0.53 100.8 4.62 4.58 181.125183.3101.21 1.636 1.683 2.87 C19 0.533 101.6 4.70 4.63 181.998184.1931.21 1.639 1.686 2.87 C33 0.535 99.3 4.76 4.79 190.277192.4531.14 1.523 1.569 3.02 C17 0.54 98.4 4.90 4.98 182.905185.2521.28 1.582 1.631 3.10 C7 0.583 107 6.30 5.89 197.729200.2671.28 1.559 1.618 3.78 C30 0.597 92.5 6.89 7.45 194.865198.1041.66 1.389 1.455 4.75 C29 0.598 86 6.93 8.06 193.542197.0611.82 1.310 1.377 5.11均值 0.554 95.2 5.41 5.69 186.405189.1731.40 1.501 1.552 3.40 C27 0.602 87.2 7.10 8.14 195.555199.0661.80 1.311 1.379 5.19 C8 0.618 120.4 7.84 6.51 205.232207.8861.29 1.661 1.732 4.27 C9 0.625 124 8.21 6.62 217.326219.7651.12 1.593 1.664 4.46 C28 0.626 97.6 8.26 8.46 204.771208.1911.67 1.378 1.454 5.52 C10 0.636 130.9 8.82 6.74 218.716221.1641.12 1.659 1.734 4.52均值 0.621 112.0 8.05 7.18 208.874211.2141.39 1.524 1.593 4.53 C34 0.704 95.5 14.24 14.91 225.469230.2752.13 1.224 1.349 10.21 C11 0.739 185 18.79 10.16 246.115248.6851.04 1.955 2.097 7.26 C12 0.744 142.3 19.64 13.80 243.741247.2811.45 1.591 1.746 9.74 C13 0.768 168.9 24.20 14.33 260.27260.9230.25 1.772 1.955 10.33 C31 0.77 119.1 24.77 20.80 240.140245.5282.24 1.395 1.597 14.48均值 0.745 142.2 20.33 14.30 243.721246.5381.39 1.590 1.749 10.00 C25 0.816 135 39.85 29.52 258.356263.6432.05 1.512 1.830 21.03 C14 0.819 198.2 40.99 20.68 260.931264.6211.41 1.993 2.289 14.85均值 0.818 166.6 40.42 24.26 259.867264.1321.73 1.756 2.060 17.31

图3给出了B、C系列试件随试件初始缝高比的关系曲线图。

图3 自重对B、C系列试件CMODiniac 的影响随初始缝高比变化的关系曲线
Fig.3 Variation of influence of self-weight on CMODini, ac andwith initial crack-depth ratios

由图3可知,对于B、C系列试件,随着初始缝高比的增大,自重对CMODiniKIu Cn的影响逐渐增大,最大影响分别为7.37%和5.3%及24.26%和17.31%,而对ac的影响基本保持不变,分别维持在0.7%和1.5%左右。由此可知,初始缝高比对影响②的作用有重要影响,尤其对于大初始缝高比的大尺寸三点弯曲梁试件。分析原因是由于初始缝高比较大时,试件跨中裂缝截面抗弯刚度降低很多,故试件的初始裂缝张开柔度Ci很大,又因试件的自重较大,由式(6)可知,此时自重作用下的CMODini较大,进而由式(7)和式(8)知,此时计算所得的也将增大。

3 结论

本文给出了三点弯曲梁试件自重引起的初始裂缝张口位移CMODini及考虑CMODini影响的有效裂缝长度ac及失稳断裂韧度的计算公式,通过与不同试件尺寸及不同初始缝高比的标准三点弯曲梁试件试验数据的对比分析,研究了CMODini对三点弯曲梁断裂性能的影响规律,得到以下结论:

(1) 对于初始缝高比为0.4,最大尺寸为2200 mm×550 mm×240 mm的不同试件尺寸的小骨料一级配、大骨料原级配及湿筛二级配(原三级配)的三点弯曲梁试件,随着试件尺寸的增大,试件自重逐渐增大,但由于跨中裂缝截面的抗弯惯性矩与韧带高度(h-a0)呈三次方关系也在同时增大,使得自重对CMODiniac的影响虽逐渐增强,但均小于5%。

(2) 由于随着初始缝高比的增大,三点弯曲梁试件跨中裂缝截面抗弯刚度降低较多,使得自重对CMODini的影响受试件初始缝高比影响较大,且随初始缝高比的增大而增大,当试件尺寸为1143 mm×305 mm×76 mm,初始缝高比为0.818时,自重对CMODiniac的影响分别为24.26%、1.73%和17.31%,可见,此时自重引起的CMODini对失稳断裂韧度的影响较大,建议采用本文改进的公式进行断裂参数的计算。

考虑到一般的室内试验试件高度在100 mm~400 mm之间,即相应的跨度为400 mm~1600 mm之间,且初始缝高比一般在0.2~0.5之间,而此时自重引起的CMODini对断裂参数的影响最大在5%左右,可以认为目前采用三点弯曲梁试件研究混凝土断裂性能,而没有考虑自重引起的CMODini影响的试验数据均是有效的,可以供工程实践参考,并且在工程实践中,建议偏于安全的采用《规程》中的计算公式,但为了得到更精确的混凝土断裂参数,也为了准确的确定断裂参数的安全储备,无论是数值模拟还是试验实测,我们建议采用本文改进的公式,尤其当试件尺寸较大(如试件高度超过400 mm,即相应的跨度大于1600 mm)及初始缝高比较大(如超过0.5)时的情况。显然,随着试件尺寸的增大,自重的影响将更加明显,尤其在研究对实际高混凝土坝有重要参考意义的全级配及湿筛混凝土断裂性能时,试件的尺寸将更大,此时,我们建议采用可以抵消自重影响的楔入劈拉试件。此外,对于不同强度及不同骨料粒径时的情形有待进一步验证。

参考文献:

[1]杜修力, 金浏, 李冬.混凝土与混凝土结构尺寸效应述评(I): 材料层次[J].土木工程学报, 2017, 50(9): 28―45.Du Xiuli, Jin Liu, Li Dong.A state-of-the-art review on the size effect of concretes and concrete structures (I):concrete materials [J].China Civil Engineering Journal,2017, 50(9): 28―45.(in Chinese)

[2]杜修力, 金浏, 李冬.混凝土与混凝土结构尺寸效应述评(II): 构件层次[J].土木工程学报, 2017, 50(11): 24―44.Du Xiuli, Jin Liu, Li Dong.A state-of-the-art review on the size effect of concretes and concrete structures (II):RC members [J].China Civil Engineering Journal, 2017,50(11): 24―44.(in Chinese)

[3]杜敏, 金浏, 李冬, 等.骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J].工程力学, 2017,34(9): 54―63.Du Min, Jin Liu, Li Dong, et al.Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading [J].Engineering Mechanics,2017, 34(9): 54―63.(in Chinese)

[4]Bažant Z P.Size effect in blunt fracture: concrete, rock,metal [J].Journal of Engineering Mechanics, 1984,110(4): 518―535.

[5]Bažant Z P, Yu Q.Universal size effect law and effect of crack depth on quasi-brittle structure strength [J].Journal of Engineering Mechanics, 2009, 135(2): 78―84.

[6]Hoover C G, Bažant Z P.Comprehensive concrete fracture tests: Size effects of Types 1 & 2, crack length effect and postpeak [J].Engineering Fracture Mechanics,2013, 110: 281―289.

[7]Hoover C G, Bažant Z P.Universal size-shape effect law based on comprehensive concrete fracture tests [J].Journal of engineering mechanics, 2014, 140(3): 473―479.

[8]Hu X Z, Wittmann F.Size effect on toughness induced by crack close to free surface [J].Engineering Fracture Mechanics, 2000, 65(2): 209―221.

[9]Hu X Z.An asymptotic approach to size effect on fracture toughness and fracture energy of composites [J].Engineering Fracture Mechanics, 2002, 69(5): 555―564.

[10]Hu X Z, Duan K.Size effect and quasi-brittle fracture:the role of FPZ [J].International Journal of Fracture,2008, 154(1/2): 3―14.

[11]Wang Y S, Hu X Z, Liang L, et al.Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens [J].Engineering Fracture Mechanics, 2016, 160: 67―77.

[12]Wang Y S, Hu X Z.Determination of tensile strength and fracture toughness of granite using notched three-pointbend samples [J].Rock Mechanics & Rock Engineering,2017, 50(1): 17―28.

[13]Guan J F, Hu X Z, Yao X H, et al.Fracture of 0.1 and 2 m long mortar beams under three-point-bending [J].Materials & Design, 2017, 133(11): 363―375.

[14]管俊峰, 王强, Hu Xiaozhi, 等.考虑骨料尺寸的混凝土岩石边界效应断裂模型[J].工程力学, 2017, 34(12):22―30.Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al.Boundary effect frture model for concrete and granite considering aggregate size [J].Engineering Mechanics, 2017, 34(12):22―30.(in Chinese)

[15]徐平, 胡晓智, 张敏霞, 等.考虑骨料体积含量影响的混凝土准脆性断裂预测模型及应用[J].工程力学,2018(10): 75―84.Xu Ping, Hu Xiaozhi, Zhang Minxia, et al.Quasi-brittle fracture model and application on concrete considering aggregate volume content effect [J].Engineering Mechanics, 2018(10): 75―84.(in Chinese)

[16]Zhang C G, Hu X Z, Wu Z M, et al.Influence of grain size on granite strength and toughness with reliability specified by normal distribution [J].Theoretical and Applied Fracture Mechanics, 2018, 96: 534―544.

[17]Zhang C G, Hu X Z, Sercombe T, et al.Prediction of ceramic fracture with normal distribution pertinent to grain size [J].Acta Materialia, 2018, 145: 41―48.

[18]管俊峰, 谢超鹏, Hu Xiaozhi, 等.基于边界效应理论确定热轧碳素钢的韧度与强度[J].工程力学, 2019,36(3): 231―239.Guan Junfeng, Xie Pengchao, Hu Xiaozhi, et al.Determination of fracture toughness and yield strength of hot rolled carbon steel based on boundary effect theory[J].Engineering Mechanics, 2019, 36(3): 231―239.(in Chinese)

[19]管俊峰, 姚贤华, 白卫峰, 等.由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J].工程力学, 2019, 36(1):70―79.Guan Junfeng, Yao Xianhua, Bai Weifeng, et al.Determination of fracture toughness and tensile strength of concrete using small specimens [J].Engineering Mechanics, 2019, 36(1): 70―79.(in Chinese)

[20]徐世烺, 周厚贵, 高洪波, 等.各种级配大坝混凝土双K断裂参数试验研究—兼对《水工混凝土断裂试验规程》制定的建议[J].土木工程学报, 2006, 39(11):50―62.Xu Shilang, Zhou Hougui, Gao Hongbo, et al.Experimental study on double-K fracture parameters of concrete for dam construction with various grading aggregates [J].China Civil Engineering Journal, 2006,39(11): 50―62.(in Chinese)

[21]赵志方, 张小刚, 周厚贵, 等.长江三峡大坝混凝土双K断裂参数试验研究[J].深圳大学学报(理工版), 2007,24(4): 363―367.Zhao Zhifang, Zhang Xiaogang, Zhou Hougui, et al.Experimental study for determining double-K fracture parameters of the Three Gorges Dam concrete [J].Journal of Shenzhen University Science & Engineering,2007, 24(4): 363―367.(in Chinese)

[22]Xu S L, Zhang X F.Determination of fracture parameters for crack propagation in concrete using an energy approach [J].Engineering Fracture Mechanics, 2008,75(15): 4292―4308.

[23]徐世烺, 余秀丽, 李庆华.电测法确定低强混凝土裂缝起裂和等效裂缝长度[J].工程力学, 2015, 32(12): 84―89.Xu Shilang, Yu Xiuli, Li Qinghua.Determination of crack initiation and equivalent crack length of low strength concrete using strain gauges [J].Engineering Mechanics, 2012, 29(1): 162―167.(in Chinese)

[24]胡少伟, 安康.不同尺寸混凝土三点弯曲梁试件断裂过程试验研究[J].水利水电技术, 2015, 46(6): 120―125.Hu Shaowei, An Kang.Experimental study on fracture process of various size specimens of three-point bending concrete beam [J].Water Resources and Hydropower Engineering, 2015, 46(6): 120―125.(in Chinese)

[25]徐世烺, 卜丹, 张秀芳.不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定[J].土木工程学报, 2008,41(2): 70―76.Xu Shilang, Bu Dan, Zhang Xiufang.Study on double-K fracture parameters by using wedge-splitting test on compact tension specimens of various sizes [J].China Civil Engineering Journal, 2008, 41(2): 70―76.(in Chinese)

[26]胡少伟, 胡鑫.含空洞缺陷混凝土试件楔入劈拉性能分析[J].水利水运工程学报, 2017(1): 1―9.Hu Shaowei, Hu Xin.Experimental studies and performance analysis of wedge splitting for concrete specimens with cavity defects [J].Hydro-Science and Engineering, 2017(1): 1―9.(in Chinese)

[27]Guan J F, Hu X Z, Xie C P, et al.Wedge-splitting tests for tensile strength and fracture toughness of concrete [J].Theoretical and Applied Fracture Mechanics, 2018, 93:263―275.

[28]Mi Z X, Hu Y, Li Q B, et al.Effect of curing humidity on the fracture properties of concrete [J].Construction and Building Materials, 2018, 169: 403―413.

[29]Mi Z X, Hu Y, Li Q B, et al.Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model [J].Engineering Fracture Mechanics, 2018, 199: 294―307.

[30]Mi Z X, Hu Y, Li Q B, et al.Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity [J].Construction and Building Materials, 2019, 196: 1―13.

[31]Kumar S, Barai S V.Influence of specimen geometry on determination of double-K fracture parameters of concrete: a comparative study [J].International Journal of Fracture, 2008, 149(1): 47―66.

[32]Li Q B, Guan J F, Wu Z M, et al.Fracture behavior of site-casting dam concrete [J].ACI Materials Journal,2015, 112(1): 11―20.

[33]Guan J F, Li Q B, Wu Z M, et al.Fracture parameters of site-cast dam and sieved concrete [J].Magazine of Concrete Research, 2015, 68(1): 1―12.

[34]Guan J F, Li Q B, Wu Z M, et al.Minimum specimen size for fracture parameters of site-casting dam concrete[J].Construction & Building Materials, 2015, 93(1):973―982.

[35]Li Q B, Guan J F, Wu Z M, et al.Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete [J].Construction and Building Materials, 2016, 120: 293―308.

[36]Xu S L, Reinhardt H W.A simplified method for determining double-K fracture parameters for three-point bending tests [J].International Journal of Fracture, 2000,104(2): 181―209.

[37]荣华, 董伟, 吴智敏, 等.大初始缝高比混凝土试件双K断裂参数的试验研究[J].工程力学, 2012, 29(1): 162―167.Rong Hua, Dong Wei, Wu ZhiMin, et al.Experimental investigation on double-K fracture parameters for large initial crack-depth ratio in concrete [J].Engineering Mechanics, 2012, 29(1): 162―167.(in Chinese)

[38]Hoover C G, Bažant Z P, Vorel J, et al.Comprehensive concrete fracture tests: Description and results [J].Engineering Fracture Mechanics, 2013, 114: 92―103.

[39]Liu X Y, Li Z C.Determining double-K fracture parameters of concrete only by the measured peak load[J].Theoretical & Applied Fracture Mechanics, 2016, 85:412―423.

[40]赵燕茹, 王磊, 韩霄峰, 等.冻融条件下玄武岩纤维混凝土断裂韧度研究[J].工程力学, 2017, 34(9): 92―101.Zhao Yanru, Wang Lei, Han Xiaofeng, et al.Fracture toughness of basalt-fiber reinforced concrete subjected tocyclic freezing and thawing [J].Engineering Mechanics, 2017, 34(9): 92―101.(in Chinese)

[41]徐世烺, 张秀芳, 郑爽.小骨料混凝土双K断裂参数的试验测定[J].水利学报, 2006, 37(5): 543―553.Xu Shilang, Zhang Xiufang, Zheng Shuang.Experimental measurement of double-K fracture parameters of concrete with small-size aggregates [J].Journal of Hydraulic Engineering, 2006, 37(5): 543―553.(in Chinese)

[42]徐世烺, 熊松波, 李贺东, 等.混凝土断裂参数厚度尺寸效应的定量表征与机理分析[J].土木工程学报,2017(5): 57―71.Xu Shilang, Xiong Songbo, Li Hedong, et al.Quantitative characterization and mechanism analysis on thickness-dependent size effect of concrete fracture [J].China Civil Engineering Journal, 2017, 50(5): 57―71.(in Chinese)

[43]Kumar S, Barai S V.Equivalence between stress intensity factor and energy approach based fracture parameters of concrete [J].Engineering Fracture Mechanics, 2009,76(9): 1357―1372.

[44]DL/T 5332―2005, 水工混凝土断裂试验规程[S].北京: 中国电力出版社, 2006.DL/T 5332―2005, Norm for fracture test of hydraulic concrete [S].Beijing: China Power Press, 2006.(in Chinese)

[45]Xu S L, Reinhardt H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part II: Analytical evaluating and practical measuring methods for three-point bending notched beams [J].International Journal of Fracture, 1999, 98(2): 151―177.

[46]管俊峰, 胡晓智, 王玉锁, 等.用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J].水利学报, 2016,47(10): 1298―1306.Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al.Effect of fracture toughness and tensile strength on fracture based on boundary effect theory [J].Journal of Hydraulic Engineering, 2016, 47(10): 1298―1306.(in Chinese)

[47]Liu X Y, Li Z C.Determining double-K fracture parameters of concrete only by the measured peak load[J].Theoretical and Applied Fracture Mechanics, 2016,85: 412―423.

[48]Qing L B, Nie Y T, Wang J, et al.A simplified extreme method for determining double-K fracture parameters of concrete using experimental peak load [J].Fatigue &Fracture of Engineering Materials & Structures, 2017,40(2): 254―266.

INFLUENCE OF SELF-WEIGHT ON THE FRACTURE PROPERTIES OF THREE-POINT BENDING CONCRETE BEAMS

YIN Yang-yang1 , HU Shao-wei2,3 , WANG Yu-hang2
(1.College of Civil and Transportation Engineering, Hohai university,Nanjing 210098, China;2.College of Civil Engineering, Chongqing university, Chongqing 400045, China; 3.Nanjing Hydraulic Research Institute, Nanjing 210024, China)

Abstract: Self-weight has a significant influence on the fracture properties of beams under three-point bending(TPB).However, the influence of initial crack mouth opening displacement (CMODini) caused by self-weight was rarely considered in previous research on concrete fracture properties based on TPB beams.To investigate the influence of CMODini on the fracture properties of TPB beams, a calculation formula of CMODini, effective crack length (ac) and unstable fracture toughnessconsidering the influence of CMODini are presented.The calculated results of the formula were compared with the experimental data of specimens of different sizes and initial crack-depth ratios.The results indicate that CMODini is slightly influenced by the specimen sizes.The influence of the self-weight on CMODini, ac andis less than 5% even if the specimen size is 2200 mm×550 mm×240 mm and the initial crack-depth ratio is 0.4.CMODini is greatly influenced by the initial crack-depth ratio.The influence increases with the increase of the initial crack-depth ratio.Moreover, the influences of the self-weight on CMODini, ac andare 24.26%, 1.73% and 17.31%, respectively, when the specimen size is 1143 mm×305 mm×76 mm and the initial crack-depth ratio is 0.818.Therefore, the influence of CMODini caused by the self-weight of TPB beams should be taken into account when both the specimen size andthe initial crack-depth ratio are large.

Key words: concrete; self-weight; three-point bending beam; initial crack mouth opening displacement;unstable fracture toughness; double-K fracture model

中图分类号:TU502+.6; TU528

文献标志码:A

doi: 10.6052/j.issn.1000-4750.2018.08.0458

文章编号:1000-4750(2019)07-0048-09

收稿日期:2018-08-16;修改日期:2018-12-25

基金项目:国家自然科学基金重点项目(51739008);国家重大科研仪器研制项目(51527811)

通讯作者:胡少伟(1969―),男,河南杞县人,教授,博士, 主要从事混凝土断裂力学研究(E-mail: hushaowei@nhri.cn).

作者简介:

尹阳阳(1991―),男,河南开封人,博士生,主要从事混凝土断裂力学研究(E-mail: yinyy1991@hhu.edu.cn);

王宇航(1985―),男,重庆人,研究员,博士,主要从事组合结构研究(E-mail: wangyuhang@cqu.edu.cn).