张风亮, 潘文彬, 刘祖强, 胡晓锋, 赵湘璧. 独立式石箍窑洞振动台试验研究[J]. 工程力学, 2023, 40(2): 85-96. DOI: 10.6052/j.issn.1000-4750.2021.08.0614
引用本文: 张风亮, 潘文彬, 刘祖强, 胡晓锋, 赵湘璧. 独立式石箍窑洞振动台试验研究[J]. 工程力学, 2023, 40(2): 85-96. DOI: 10.6052/j.issn.1000-4750.2021.08.0614
ZHANG Feng-liang, PAN Wen-bin, LIU Zu-qiang, HU Xiao-feng, ZHAO Xiang-bi. STUDY ON SHAKING TABLE TEST OF FREESTANDING STONE CAVE DWELLING[J]. Engineering Mechanics, 2023, 40(2): 85-96. DOI: 10.6052/j.issn.1000-4750.2021.08.0614
Citation: ZHANG Feng-liang, PAN Wen-bin, LIU Zu-qiang, HU Xiao-feng, ZHAO Xiang-bi. STUDY ON SHAKING TABLE TEST OF FREESTANDING STONE CAVE DWELLING[J]. Engineering Mechanics, 2023, 40(2): 85-96. DOI: 10.6052/j.issn.1000-4750.2021.08.0614

独立式石箍窑洞振动台试验研究

STUDY ON SHAKING TABLE TEST OF FREESTANDING STONE CAVE DWELLING

  • 摘要: 根据现场调研,以山西省静乐县典型三连拱独立式石箍窑洞为研究对象,设计制作了缩尺比例为1∶4的模型结构,并对其进行了地震模拟振动台试验,分析了模型结构的自振频率、阻尼比、加速度放大系数、最大相对位移、位移角、底部剪力与耗能等。结果表明:独立式石箍窑洞结构在地震作用下的薄弱部位为边洞洞口处拱顶与中窑腿;随着输入地震波峰值加速度的增大,模型结构自振频率下降,阻尼比上升;模型结构各部位的动力放大系数随着输入峰值加速度的增加变化不大, x向动力放大系数最大处为拱顶,y向动力放大系数最大处为窑顶;输入加速度峰值为70 gal(小震)、200 gal(中震)、440 gal(大震)时,结构最大侧移角均出现在拱顶,分别为1/1618、1/491、1/255,输入峰值加速度为600 gal时,最大侧移角出现在窑顶,为1/102;输入峰值加速度为800 gal时,结构的最大扭转角为0.0037 rad;底部剪力和累积滞回耗能均随着输入地震波峰值加速度的增大而增大。研究结果可为石箍窑洞这一西北传统民居的妥善保护和传承提供科学依据。

     

    Abstract: According to the on-site investigation, taking the typical three-arch freestanding stone cave dwelling in Jingle County, Shanxi Province as the research object, the paper designed and manufactured a 1/4 model, and then carried out a shaking table test for it. The natural vibration frequency, damping ratio, acceleration amplification factor, maximum relative displacement, lateral displacement angle, base shear force and structural energy dissipation were analyzed. Test results show that the weak parts under the earthquake action are the dome and the middle kiln leg at the entrance of the side cave. With the increase of the peak acceleration of input seismic wave, the natural vibration frequency of the model decreases and the damping ratio increases. The dynamic amplification coefficients of the model changes little with the increase of the input peak acceleration. The largest dynamic amplification coefficient in the x-direction and y-direction occurs at the arch roof and kiln roof, respectively. When the input peak acceleration is 70 gal (frequent earthquakes), 200 gal (fortification earthquakes) and 440 gal (rare earthquakes), the maximum lateral displacement angle of the model occurs in the arch roof, which is 1/1618, 1/491 and 1/255, respectively. When the input peak acceleration is 600 gal, the maximum lateral displacement angle occurs in the kiln roof, which is 1/102. When the input peak acceleration is 800 gal, the maximum torsion angle of the model is 0.0037 rad. The bottom shear force and energy dissipation of the model increase with the increase of the peak acceleration of input seismic wave.

     

/

返回文章
返回