朱翔, 尹曜, 王蕊, 康苗. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247-256. DOI: 10.6052/j.issn.1000-4750.2020.06.0428
引用本文: 朱翔, 尹曜, 王蕊, 康苗. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247-256. DOI: 10.6052/j.issn.1000-4750.2020.06.0428
ZHU Xiang, YIN Yao, WANG Rui, KANG Miao. ENERGY ABSORPTION PERFORMANCE OF THIN-WALL ALUMINUM ALLOY MULTI-CELL AND SINGLE-CELL COMPONENTS FILLED WITH ALUMINUM FOAM[J]. Engineering Mechanics, 2021, 38(5): 247-256. DOI: 10.6052/j.issn.1000-4750.2020.06.0428
Citation: ZHU Xiang, YIN Yao, WANG Rui, KANG Miao. ENERGY ABSORPTION PERFORMANCE OF THIN-WALL ALUMINUM ALLOY MULTI-CELL AND SINGLE-CELL COMPONENTS FILLED WITH ALUMINUM FOAM[J]. Engineering Mechanics, 2021, 38(5): 247-256. DOI: 10.6052/j.issn.1000-4750.2020.06.0428

泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究

ENERGY ABSORPTION PERFORMANCE OF THIN-WALL ALUMINUM ALLOY MULTI-CELL AND SINGLE-CELL COMPONENTS FILLED WITH ALUMINUM FOAM

  • 摘要: 为研究泡沫铝填充薄壁铝合金多胞结构与单胞结构的吸能能力,该文基于有限元软件LS-DYNA建立了泡沫铝填充薄壁铝合金多胞结构与单胞结构的数值仿真。对经典薄壁圆管试验及泡沫铝填充薄壁圆管试验进行了数值模拟,分析表明该数值模型能够较好的模拟泡沫铝填充薄壁圆管在轴向冲击过程中的撞击力和变形发展。基于该模型对比研究了不同因素下泡沫铝填充薄壁铝合金多胞结构与单胞结构的轴向吸能特性,分析了其破坏模式、吸能机理和两者吸能效率。结果表明:在轴向冲击荷载作用下,泡沫铝填充薄壁铝合金的破坏模式为轴对称渐进折叠破坏模式,冲击力-位移曲线和变形模态图显示其变形过程分为3个阶段:弹性阶段、平台阶段和强化阶段。当冲击压缩距离为构件高度的80%时,7种不同参数下的泡沫铝填充薄壁铝合金多胞结构的吸能效率明显高于7种单胞结构,吸收的能量E和比吸能SEA都提高了50%以上,是一种优秀的吸能构件,可广泛应用于防护工程中。

     

    Abstract: Numerical simulation of multi-cell structure and single-cell structure of aluminum foam-filled thin-wall aluminum alloy was conducted by the finite element software LS-DYNA to study their energy absorption capacity. A classical thin-walled tube test and an aluminum-foam-filled thin-walled tube test were numerically simulated. The analysis shows that the numerical model can well simulate the impact force and deformation development of the aluminum-foam-filled thin-walled tube during the axial impact process. Based on this model, the axial energy absorption characteristics of multi-cell structure and single-cell structure of aluminum foam-filled thin-walled aluminum alloy under different factors were compared. Their failure modes, energy absorption mechanism and energy absorption efficiency were analyzed. The results show that the failure mode of aluminum foam-filled thin-walled aluminum alloy exhibits an axisymmetric progressive folding failure mode under the axial impact load. The deformation process is divided into three stages according to the impact-displacement curve and the deformation mode diagram, namely, the elastic stage, the platform stage, and the strengthening stage. When the impact compression distance is 80% of the height of the component, the energy absorption efficiency of the thin-walled aluminum foamed multi-cell structure under seven different parameters is significantly higher than that of the seven single-cell structures. The absorbed energy and the specific energy absorption are increased by more than 50%. It is an excellent energy absorption component and can be widely used in protection engineering.

     

/

返回文章
返回