周凤玺, 蒲育. 热-力-粘弹耦合多孔FGVM梁的动力学特性[J]. 工程力学, 2021, 38(2): 16-26. DOI: 10.6052/j.issn.1000-4750.2020.04.0235
引用本文: 周凤玺, 蒲育. 热-力-粘弹耦合多孔FGVM梁的动力学特性[J]. 工程力学, 2021, 38(2): 16-26. DOI: 10.6052/j.issn.1000-4750.2020.04.0235
ZHOU Feng-xi, PU Yu. DYNAMIC BEHAVIORS OF POROUS FGVM BEAMS SUBJECTED TO THERMAL MECHANICAL VISCOELASTIC EFFECTS[J]. Engineering Mechanics, 2021, 38(2): 16-26. DOI: 10.6052/j.issn.1000-4750.2020.04.0235
Citation: ZHOU Feng-xi, PU Yu. DYNAMIC BEHAVIORS OF POROUS FGVM BEAMS SUBJECTED TO THERMAL MECHANICAL VISCOELASTIC EFFECTS[J]. Engineering Mechanics, 2021, 38(2): 16-26. DOI: 10.6052/j.issn.1000-4750.2020.04.0235

热-力-粘弹耦合多孔FGVM梁的动力学特性

DYNAMIC BEHAVIORS OF POROUS FGVM BEAMS SUBJECTED TO THERMAL MECHANICAL VISCOELASTIC EFFECTS

  • 摘要: 研究了初始轴向机械力作用下三参数Winkler-Pasternak粘弹性地基上多孔功能梯度粘弹性材料(FGVM)梁在热环境中的自由振动特性。考虑满足热传导方程的稳态温度分布以及材料性质的温度相关性,采用Kelvin-Voigt模型并由含孔隙率修正的混合幂率梯度分布来表征内含均匀孔隙FGVM梁的材料属性。基于n阶广义梁理论,在Hamilton体系下建立该系统动力学模型的控制方程;应用扩展型广义Navier法得到固支-固支、固支-简支、简支-简支这3种边界FGVM梁耦合振动输出响应的精确解;通过算例主要探究了梁理论、边界条件、热-力耦合效应、粘弹性地基系数、结构内阻尼系数、孔隙率、材料梯度指标、跨厚比以及振型阶次等诸多参数对FGVM梁动力学特性的影响。

     

    Abstract: Based on a three-parameter Winkler-Pasternak viscoelastic foundation model, the free vibration behavior of porous functionally graded viscoelastic material (FGVM) beams in thermal environment subjected to initial axial mechanical force is investigated. Temperature distribution is determined by a one-dimensional steady-state heat conduction equation. The material properties are temperature-dependent and described by using Kelvin-Voigt model according to the modified mixture power-law distribution form with even porosity for FGVM beams. Based on n-th order generalized beam theory, the dynamic governing equations for this system are derived by using Hamiltonian principle. An generalized form for Navier method can be utilized to obtain the exact coupling vibration responses of the FGVM beams with both clamped ends, clamped at one end and hinged at the other end, and hinged at both ends. The effects of different beam theories, boundary conditions, thermal-mechanical loads, viscoelastic foundation parameters, structural damping coefficient, porosity, material graded index, length-to-thickness ratio and mode number on the dynamic behavior of FGVM beams are discussed by several numerical examples.

     

/

返回文章
返回