谢长川, 胡锐, 王斐, 刘燚, 常楠. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11): 249-256. DOI: 10.6052/j.issn.1000-4750.2015.04.0254
引用本文: 谢长川, 胡锐, 王斐, 刘燚, 常楠. 大展弦比柔性机翼气动弹性风洞模型设计与试验验证[J]. 工程力学, 2016, 33(11): 249-256. DOI: 10.6052/j.issn.1000-4750.2015.04.0254
XIE Chang-chuan, HU Rui, WANG Fei, LIU Yi, CHANG Nan. AEROELASTIC WIND TUNNEL TEST MODEL DESIGN AND EXPERIMENT ON VERY FLEXIBLE HIGH-ASPECT-RATIO WINGS[J]. Engineering Mechanics, 2016, 33(11): 249-256. DOI: 10.6052/j.issn.1000-4750.2015.04.0254
Citation: XIE Chang-chuan, HU Rui, WANG Fei, LIU Yi, CHANG Nan. AEROELASTIC WIND TUNNEL TEST MODEL DESIGN AND EXPERIMENT ON VERY FLEXIBLE HIGH-ASPECT-RATIO WINGS[J]. Engineering Mechanics, 2016, 33(11): 249-256. DOI: 10.6052/j.issn.1000-4750.2015.04.0254

大展弦比柔性机翼气动弹性风洞模型设计与试验验证

AEROELASTIC WIND TUNNEL TEST MODEL DESIGN AND EXPERIMENT ON VERY FLEXIBLE HIGH-ASPECT-RATIO WINGS

  • 摘要: 大展弦比柔性机翼飞机的气动弹性是当前理论研究的热点,而风洞试验研究则是揭示大变形气动弹性运动机理和验证理论方法的必要手段。该文建立了能够考虑几何非线性特点的大展弦比柔性机翼风洞试验模型结构设计方案。该方案设计结合几何非线性气动弹性理论分析与模型地面试验,在确保分析模型与理论模型一致的基础上,进行了实物模型的气动弹性风洞试验。风洞试验结果表明大展弦比柔性机翼的结构大变形效应对其气动弹性特性产生了一定影响,大变形导致结构水平弯曲模态发生失稳进而降低了模型的颤振速度,与几何非线性气动弹性分析结果一致。试验颤振速度、颤振模态均与理论分析结果吻合,验证了该文几何非线性气动弹性分析方法的准确性。

     

    Abstract: The aeroelastic characteristics for a very flexible aircraft is the focus of present theoretical research, and the wind tunnel experiment is the necessary way to view the mechanism of large aeroelastic motion and to validate the theoretic method. In order to study the influence for geometric nonlinearity of high-aspect-ratio wings, a wind tunnel model is designed and constructed. With the combination of the theoretic analysis of geometric nonlinear aeroelasticity and the vibration test of the model, the aeroelastic wind tunnel test is performed on the base of consistency between the analysis model and the test model. The experiment results show that the large deformation of a high aspect ratio wing will affect the aeroelastic property to some extent. The large deformation causes the instability of the horizontal bending mode and decreases the flutter speed, which are coincident with the predictions by the nonlinear aeroelastic theoretic method. The flutter speed and the flutter mode are all in a good agreement with those of the theoretic method. Thusly, the availability and accuracy for the geometric nonlinear aeroelastic analysis method is verified.

     

/

返回文章
返回