洪兆徽, 刘润, 刘文彬, 闫澍旺. 双拱缺陷管线整体屈曲的解析解研究[J]. 工程力学, 2016, 33(3): 31-38. DOI: 10.6052/j.issn.1000-4750.2014.08.0697
引用本文: 洪兆徽, 刘润, 刘文彬, 闫澍旺. 双拱缺陷管线整体屈曲的解析解研究[J]. 工程力学, 2016, 33(3): 31-38. DOI: 10.6052/j.issn.1000-4750.2014.08.0697
HONG Zhao-hui, LIU Run, LIU Wen-bin, YAN Shu-wang. ANALYTICAL SOLUTION OF PIPELINE GLOBAL BUCKLING WITH DOUBLE ARCH IMPERFECTIONS[J]. Engineering Mechanics, 2016, 33(3): 31-38. DOI: 10.6052/j.issn.1000-4750.2014.08.0697
Citation: HONG Zhao-hui, LIU Run, LIU Wen-bin, YAN Shu-wang. ANALYTICAL SOLUTION OF PIPELINE GLOBAL BUCKLING WITH DOUBLE ARCH IMPERFECTIONS[J]. Engineering Mechanics, 2016, 33(3): 31-38. DOI: 10.6052/j.issn.1000-4750.2014.08.0697

双拱缺陷管线整体屈曲的解析解研究

ANALYTICAL SOLUTION OF PIPELINE GLOBAL BUCKLING WITH DOUBLE ARCH IMPERFECTIONS

  • 摘要: 海底管线通常具有初始缺陷,高温高压作用下管线会在初始缺陷的基础上进一步变形最终发展为整体屈曲。该文以具有初始反对称双拱缺陷的海底管线为研究对象,基于理想管线整体屈曲的变形假设,通过求解管线屈曲前后的能量平衡方程,得到了管线发生二阶与四阶模态整体屈曲的解析解,建立了整体屈曲过程中管内轴力与屈曲波长间的关系。通过研究屈曲段轴力与滑动段轴力的变化规律,揭示了经典解析解得到的管线整体屈曲前轴力随幅值的变化曲线出现动态跳转的机理。工程算例分析表明,相同条件下管线更容易发生二阶模态的整体屈曲;当屈曲段轴力的释放速率大于滑动段摩阻力的累积速率时,才会出现动态跳转的问题。

     

    Abstract: Submarine pipelines usually have initial imperfections which would induce global buckling of the pipelines under the action of high temperature and high inner pressure. This study focuses on the thermal buckling behavior of pipelines with double arch initial imperfections. Based on the assumption of global buckling deformation of ideal pipelines, analytical solutions for the second-and fourth-order modes are obtained for pipelines with double arch initial imperfections. By solving the energy equilibrium equations of pipeline global buckling, the relationship between the axial force in the pipe and the buckling wavelength of the pipeline is established for the process of buckling. The variation of axial force in the buckling segment and the slipping segment is investigated to reveal the mechanism of snap buckling. The case study shows that the second-order mode deformation is more likely to happen than the fourth-order mode deformation if the pipeline is under the same load condition. The snap buckling takes place only when the release rate of the axial force in the buckling segment is greater than the accumulative rate of the friction resistance in the slipping segment.

     

/

返回文章
返回