刘庆宽, 王 毅, 郑云飞, 马文勇. 水线-雷诺数效应-斜拉索振动关系的试验研究[J]. 工程力学, 2012, 29(11): 257-265. DOI: 10.6052/j.issn.1000-4750.2011.04.0227
引用本文: 刘庆宽, 王 毅, 郑云飞, 马文勇. 水线-雷诺数效应-斜拉索振动关系的试验研究[J]. 工程力学, 2012, 29(11): 257-265. DOI: 10.6052/j.issn.1000-4750.2011.04.0227
LIU Qing-kuan, WANG Yi, ZHENG Yun-fei, MA Wen-yong. EXPERIMENTAL STUDY ON THE RELATION OF WATER RIVULET-REYNOLDS NUMBER EFFECT-CABLE VIBRATION[J]. Engineering Mechanics, 2012, 29(11): 257-265. DOI: 10.6052/j.issn.1000-4750.2011.04.0227
Citation: LIU Qing-kuan, WANG Yi, ZHENG Yun-fei, MA Wen-yong. EXPERIMENTAL STUDY ON THE RELATION OF WATER RIVULET-REYNOLDS NUMBER EFFECT-CABLE VIBRATION[J]. Engineering Mechanics, 2012, 29(11): 257-265. DOI: 10.6052/j.issn.1000-4750.2011.04.0227

水线-雷诺数效应-斜拉索振动关系的试验研究

EXPERIMENTAL STUDY ON THE RELATION OF WATER RIVULET-REYNOLDS NUMBER EFFECT-CABLE VIBRATION

  • 摘要: 通过对不同位置粘贴有水线的斜拉索模型进行测力和测振风洞试验,分析了不同雷诺数下的阻力系数、升力系数和振幅等参数,研究了水线影响雷诺数效应及通过影响雷诺数效应导致振动的机理,研究结果表明:水线能影响力系数随雷诺数的变化规律,力系数的大小和变化规律与振动有着十分密切的关系;在较低的水线位置,随着雷诺数的上升,伴随着阻力系数的减小,升力系数大幅增大,发生类似临界雷诺数的效应,力系数随水线位置的变化规律导致驰振系数为负,在这种情况下发生大幅振动,用临界雷诺数效应和驰振均可解释;在较高的雷诺数下,伴随着阻力系数的减小,升力系数大幅变化,每个水线位置都发生了不同程度的振动,该振动的机理可能与临界雷诺数效应导致的振动机理类似。

     

    Abstract: Taking drag coefficients, lift coefficients and vibration amplitudes in different Reynolds numbers as parameters, the influence of water rivulet on Reynolds number effect and mechanism of vibration caused by such influence were studied through force-measurement and vibration-measurement wind tunnel tests of stay-cable models with water rivulets attached in different positions. The study results show that the water rivulet has a great influence upon changing rules of force coefficients with different Reynolds numbers. The value and changing rule of force coefficients have a very close relationship with vibration. At low water rivulet positions, with the increase of Reynolds number, lift coefficient increases greatly and drag force coefficient decreases greatly, which is similar to critical Reynolds number effect. At the same time, galloping coefficient becomes minus due to the change of force coefficients. The large amplitude vibration under such circumstances can be explained by both the critical Reynolds number effect and galloping. In a high Reynolds number range, lift coefficient changes greatly along with the decrease of a drag coefficient and different amplitude vibrations happen for every water rivulet position. The mechanism of this vibration may be similar to that of the vibration induced by a critical Reynolds number effect.

     

/

返回文章
返回