杜东升, 刘伟庆, 王曙光, 李威威. 粘滞流体阻尼墙对平面不规则结构的扭转效应控制研究[J]. 工程力学, 2012, 29(11): 236-242,256. DOI: 10.6052/j.issn.1000-4750.2011.04.0208
引用本文: 杜东升, 刘伟庆, 王曙光, 李威威. 粘滞流体阻尼墙对平面不规则结构的扭转效应控制研究[J]. 工程力学, 2012, 29(11): 236-242,256. DOI: 10.6052/j.issn.1000-4750.2011.04.0208
DU Dong-sheng, LIU Wei-qing, WANG Shu-guang, LI Wei-wei. RESEARCH ON TORSIONAL SEISMIC RESPONSE CONTROL OF ASYMMETRIC-PLANE STRUCTURES BY USING VISCOUS WALL DAMPERS[J]. Engineering Mechanics, 2012, 29(11): 236-242,256. DOI: 10.6052/j.issn.1000-4750.2011.04.0208
Citation: DU Dong-sheng, LIU Wei-qing, WANG Shu-guang, LI Wei-wei. RESEARCH ON TORSIONAL SEISMIC RESPONSE CONTROL OF ASYMMETRIC-PLANE STRUCTURES BY USING VISCOUS WALL DAMPERS[J]. Engineering Mechanics, 2012, 29(11): 236-242,256. DOI: 10.6052/j.issn.1000-4750.2011.04.0208

粘滞流体阻尼墙对平面不规则结构的扭转效应控制研究

RESEARCH ON TORSIONAL SEISMIC RESPONSE CONTROL OF ASYMMETRIC-PLANE STRUCTURES BY USING VISCOUS WALL DAMPERS

  • 摘要: 平面不规则结构由于平扭耦联会使边界处的位移较规则结构增大很多,而给结构配置阻尼器是减小平面不规则结构边界位移的有效途径,该文将耗能效率较高的粘滞流体阻尼墙应用于控制平面不规则结构的扭转响应,研究阻尼墙控制结构扭转效应的机理及控制结构扭转的优化布置。将减震系统刚度矩阵转换到结构的质量中心,将配置阻尼墙后形成阻尼中心的阻尼矩阵转换到质量中心,从而建立可以考虑扭转效应和附加阻尼位置效应的非线性运动控制方程,并根据响应结果推导出结构位移比的表达式;利用运动方程研究阻尼中心的位置、阻尼力的大小、阻尼参数等对结构扭转效应的影响规律,结合结构位移比的表达式提出阻尼墙的平面配置原则和最优阻尼参数的取值方法。以某L型高层建筑为工程背景,根据上述原则配置阻尼墙并选取阻尼参数,并对减震体系在最不利地震动输入方向上进行非线性时程分析,分析结果表明通过合理配置粘滞阻尼墙,L型结构的扭转响应得到了有效的控制,结构最大边界位移和位移比大大降低。该研究结果为采用阻尼墙控制不规则结构扭转效应提供了基本原则和方法,并为不规则结构的减震设计提供有益的借鉴和参考。

     

    Abstract: Lateral and torsional coupling may lead to much larger boundary displacements in asymmetric-plane structures compared with the ones in symmetric-plane structures. And it is very effective to install dampers to reduce the boundary displacements in asymmetric-plane structures. In this paper, the viscous wall dampers which have effective energy dissipation capacity are used to control the torsional seismic responses of asymmetric-plane structures. Research the mechanism and the optimal configuration of the viscous wall dampers in order to control torsional seismic responses effectively. Firstly, transform the stiffness matrix to the mass center of the energy dissipation structure. Secondly, transform the damping matrix which is in the damping center after installed the viscous wall dampers to the mass center of the energy dissipation structure. Finally, the nonlinear motion control equation which considers the torsion effect and the additional damping position effect can be established. And the expression of the structural displacement ratio can be derived based on the structure response. And using the motion equation to investigate the influence rules of structural torsion effect, which caused by the position of damping center, the magnitude of damping force and damping parameter. The principle plane configuration of viscous wall dampers and the computing method of an optimal damping parameter can be proposed by combining the structural displacement ratio expression. Take an L-shape high-rise building as an example, the viscous wall damper configurations and the damping parameter choice are selected from the principles above. The nonlinear time history analysis is carried out at the most unfavorable direction for an energy dissipation system. The results show that the reasonable configuration of viscous wall dampers can not only effectively control torsional responses of an L-shape structure but also greatly reduce the maximum boundary displacement and structural displacement ratio. These researches provide basic principles and design methods for torsional responses control of asymmetric-plane structures using viscous wall dampers. And it is also provide a good reference for the energy dissipation design of asymmetric-plane structures.

     

/

返回文章
返回