梁 捷, 陈 力. 基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制[J]. 工程力学, 2010, 27(11): 221-228.
引用本文: 梁 捷, 陈 力. 基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制[J]. 工程力学, 2010, 27(11): 221-228.
LIANG Jie, CHEN Li. FUZZY LOGIC ADAPTIVE COMPENSATION CONTROL FOR DUAL-ARM SPACE ROBOT BASED ON COMPUTED TORQUE CONTROLLER TO TRACK DESIRED TRAJECTORY IN INERTIA SPACE[J]. Engineering Mechanics, 2010, 27(11): 221-228.
Citation: LIANG Jie, CHEN Li. FUZZY LOGIC ADAPTIVE COMPENSATION CONTROL FOR DUAL-ARM SPACE ROBOT BASED ON COMPUTED TORQUE CONTROLLER TO TRACK DESIRED TRAJECTORY IN INERTIA SPACE[J]. Engineering Mechanics, 2010, 27(11): 221-228.

基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制

FUZZY LOGIC ADAPTIVE COMPENSATION CONTROL FOR DUAL-ARM SPACE ROBOT BASED ON COMPUTED TORQUE CONTROLLER TO TRACK DESIRED TRAJECTORY IN INERTIA SPACE

  • 摘要: 讨论了载体姿态受控、位置不受控制情况下,漂浮基双臂空间机器人载体姿态与末端爪手惯性空间轨迹协调运动的控制问题。利用拉格朗日方法并结合系统动量守恒关系,分析、建立了漂浮基双臂空间机器人系统完全能控形式的系统动力学方程及运动Jacobi关系。以此为基础,针对双臂空间机器人两个末端爪手所持载荷参数未知的情况,设计了一种基于标称计算力矩控制器附加模糊自适应补偿控制器的复合控制方案;即通过模糊自适应补偿控制器来弥补系统参数未知对标称计算力矩控制器控制精度的影响,以确保存在未知系统参数情况下整个闭环控制系统的渐近稳定性。该文提出的控制方案能够有效地克服系统未知参数的影响,控制漂浮基双臂空间机器人载体姿态与末端爪手协调地完成惯性空间的期望轨迹运动,并具有不需要测量和反馈双臂空间机器人载体的位置、移动速度、移动加速度,同时也不要求系统动力学方程关于系统惯性参数呈线性函数关系的显著优点。通过系统数值仿真证实了方法的有效性。

     

    Abstract: This paper discusses control problem of dual-arms space-based robot system with unknown payload parameters to track desired trajectory in inertial space, when the attitude of base is controlled and its location is uncontrolled. Referring to the principle of linear momentum conversation and the Lagrange approach, the full-controlled dynamic equation and the Jacobian relation of space-based robot system with dual-arms are established. Then, for a space-based robot system whose dual-arms system has unknown payload parameters, a composite control scheme is designed on the base of a computed torque controller and a fuzzy compensator to track desired trajectories in inertial space, i.e., balancing the effect of system unknown payload parameters on computed torque controller with fuzzy adaptive compensator, in order to ensure the whole closed-loop control system asymptotic stability with the existence of unknown payload parameters. The mentioned control scheme can effectively overcome the effect of system unknown payload parameters and control both the base attitude and the end-effector of dual-arms space-based robot, so to track the desired trajectory in inertia space. The advantages are obvious: neither the mentioned control algorithm needs to measure and feedback the position, velocity and acceleration of the floating base, nor it requires the dynamic equations of the system inertial parameters to be linear. The simulation results show that the proposed control scheme is feasible and effective.

     

/

返回文章
返回