LIU Yang, TANG Jian, CHEN Zhi-hua, WANG Xiu-jun, AN Qi. STUDY ON VERTICAL BEARING PERFORMANCE OF INVERTED CONICAL STEEL JOIST STRUCTURE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.10.0802
Citation: LIU Yang, TANG Jian, CHEN Zhi-hua, WANG Xiu-jun, AN Qi. STUDY ON VERTICAL BEARING PERFORMANCE OF INVERTED CONICAL STEEL JOIST STRUCTURE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.10.0802

STUDY ON VERTICAL BEARING PERFORMANCE OF INVERTED CONICAL STEEL JOIST STRUCTURE

More Information
  • Received Date: October 28, 2024
  • Revised Date: March 21, 2025
  • Available Online: April 02, 2025
  • The Qingdao Virtual Reality Innovation Center project adopts an inverted conical space truss support cylinder and a steel frame structure system. The bottom inverted conical space structure has a novel shape, and its load transmission mechanism and bearing performance are not yet clear. Therefore, this paper takes the inverted conical steel truss structure as a research object. Based on a geometric similarity ratio of 1∶10, the principle of stress equivalence and the actual constraint conditions, a scaled model of the inverted conical single-bay steel truss structure was designed. A vertical static load-bearing test was conducted on this scaled model, obtaining the load-displacement response, strain development law, failure mode and deformation characteristics of the model. The results show that the model specimen first undergoes weld tearing failure at the connection node between the upper connecting beam and the inclined truss, with the bearing capacity dropping to 55%. After continued loading, the bearing capacity slowly increases. Subsequently, the lower connecting beam fractures, causing a significant drop in bearing capacity again, a rapid increase in the vertical deflection of the specimen, and an overall bending deformation characteristic. The structure can still bear the load, with the upper and lower connecting beams acting as a secondary defense line. Eventually, local buckling occurs to the members at the column foot position of the specimen. Based on the experimental failure mode and through a comparison with numerical simulation results, the load transmission mechanism of this structure was further revealed, and relevant design suggestions were provided. The research results offer theoretical support for the design and analysis of such engineering projects.

  • [1]
    MA Y, BAI Y T. Laser shock peening for enhanced fatigue resistance in steel structures: Insights from Q960 steel study [J]. International Journal of Fatigue, 2024, 187: 108467. doi: 10.1016/j.ijfatigue.2024.108467
    [2]
    ZHAO X C, ZHANG G, TANG C H, et al. Evaluating fire performance of through continuous composite steel Warren-truss bridge girders: Experimental and numerical investigation [J]. Engineering Structures, 2025, 326: 119591. doi: 10.1016/j.engstruct.2024.119591
    [3]
    杨绿峰, 宋沙沙, 刘嘉达仁. 钢桁架结构稳定性与两层面强度优化设计研究[J]. 工程力学, 2020, 37(1): 207 − 217, 256. doi: 10.6052/j.issn.1000-4750.2019.03.0095

    YANG Lufeng, SONG Shasha, LIU Jiadaren. Stability and optimum design of two-level strength for steel trusses [J]. Engineering Mechanics, 2020, 37(1): 207 − 217, 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.03.0095
    [4]
    蒋庆, 王瀚钦, 冯玉龙, 等. 铰支桁架-框架结构抗震设计与性能研究[J]. 工程力学, 2019, 36(3): 105 − 113. doi: 10.6052/j.issn.1000-4750.2018.01.0001

    JIANG Qing, WANG Hanqin, FENG Yulong, et al. Seismic design and performance of hinged truss frame structures [J]. Engineering Mechanics, 2019, 36(3): 105 − 113. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.01.0001
    [5]
    GU L X, LIU C, MA N J, et al. Research on the load transfer performance of large-span steel truss cable-stayed bridge structures [J]. Advances in Mechanical Engineering, 2024, 16(10) (查阅网上资料, 未找到本条文献页码信息, 请确认) .
    [6]
    REN H, FU Z Q, JI B H, et al. Evaluation of stability behavior of the steel truss-arch composite structure [J]. Structures, 2023, 57: 105240. doi: 10.1016/j.istruc.2023.105240
    [7]
    林倩, 邓志恒, 刘其舟. 足尺钢桁架连梁抗震性能试验研究及非线性有限元分析[J]. 工程力学, 2012, 29(7): 256 − 263. doi: 10.6052/j.issn.1000-4750.2011.03.0175

    LIN Qian, DENG Zhiheng, LIU Qizhou. Experimental study and nonlinear finite element analysis on the seismic performance of full-scale steel truss coupling beams [J]. Engineering Mechanics, 2012, 29(7): 256 − 263. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0175
    [8]
    张国刚. 混凝土斜拉桥的模态参数识别与模型修正[D]. 长沙: 湖南大学, 2013.

    ZHANG Guogang. Modal parameter identification and model updating of concrete cable-stayed bridge [D]. Changsha: Hunan University, 2013. (in Chinese)
    [9]
    刘洋, 陈志华, 刘佳迪, 等. 柱承重式钢结构模块建筑抗震性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(2): 122 − 132.

    LIU Yang, CHEN Zhihua, LIU Jiadi, et al. Experimental study on seismic performance of corner-supported modular steel buildings [J]. Journal of Tianjin University (Science and Technology), 2021, 54(2): 122 − 132. (in Chinese)
    [10]
    任军辉. 起重机互嵌式法兰铰接支座设计[J]. 港口装卸, 2022(4): 19 − 21.

    REN Junhui. Design of mutual embedded type flange hinged support for cranes [J]. Port Operation, 2022(4): 19 − 21. (in Chinese)
    [11]
    GB/T 228.1−2021, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2021.

    GB/T 228.1−2021, Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: China Standard Press, 2021. (in Chinese)
    [12]
    LEE S S, PARK K S, JUNG J S, et al. Evaluation of the structural performance of a novel methodology for connecting modular units using straight and cross-shaped connector plates in modular buildings [J]. Applied Sciences, 2020, 10(22): 8186. doi: 10.3390/app10228186
    [13]
    DENG E F, WANG Y H, ZONG L, et al. Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies [J]. Thin-Walled Structures, 2024, 197: 111563. doi: 10.1016/j.tws.2024.111563
    [14]
    WU L M, CUI C, XIE Y J, et al. Investigating parameters and ultimate load-bearing performance of novel anchor-box type cable-girder anchoring structure for large-span cable-stayed bridges [J]. Engineering Structures, 2024, 313: 118289. doi: 10.1016/j.engstruct.2024.118289
    [15]
    GB 50017−2017, 钢结构设计标准[S]. 北京: 中国建筑工业出版社, 2017.

    GB 50017−2017, Standard for design of steel structures [S]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [16]
    陈志华, 刘洋, 钟旭, 等. 模块连接节点分析设计及其剪切性能试验研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊2): 9 − 15.

    CHEN Zhihua, LIU Yang, ZHONG Xu, et al. Study of the design and shear behavior of a novel inter-module connection for modular steel buildings [J]. Journal of Tianjin University (Science and Technology), 2019, 52(Suppl 2): 9 − 15. (in Chinese)
    [17]
    宗亮, 张一弛, 崔健, 等. 模块化钢结构梁柱子结构抗连续倒塌性能研究[J]. 工程力学, 2024, 41(8): 56 − 67. doi: 10.6052/j.issn.1000-4750.2022.06.0521

    ZONG Liang, ZHANG Yichi, CUI Jian, et al. Progressive collapse analysis on beam-column substructure of modular steel construction [J]. Engineering Mechanics, 2024, 41(8): 56 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.06.0521
    [18]
    宗亮, 昝彩旺, 林冰. 应变时效后Q690D钢材的力学性能与本构模型[J/OL]. 工程力学. https://doi.org/10.6052/j.issn.1000-4750.2024.03.0178, 2024-07-09.

    ZONG Liang, ZAN Caiwang, LIN Bing. Mechanical behaviors and constitutive model of Q690D steel after strain aging [J/OL]. Engineering Mechanics, https://doi.org/10.6052/j.issn.1000-4750.2024.03.0178, 2024-07-09. (in Chinese)
    [19]
    朱大壮, 黄冰峰, 朴贤日, 等. 不同配筋率下钢筋混凝土板柱节点抗冲切承载力试验研究[J]. 工程力学, 2024, 41(增刊1): 66 − 73. doi: 10.6052/j.issn.1000-4750.2023.05.S028

    ZHU Dazhuang, HUANG Bingfeng, PAK H, et al. Experimental study on the punching and shearing resistance of reinforced concrete slab-column joints with different reinforcement ratios [J]. Engineering Mechanics, 2024, 41(Suppl 1): 66 − 73. (in Chinese) doi: 10.6052/j.issn.1000-4750.2023.05.S028
    [20]
    杨欣, 张举兵, 李小龙, 等. 基于监测数据的钢桁梁桥温度变形研究[J]. 工程力学, 2024, 41(增刊1): 310 − 316. doi: 10.6052/j.issn.1000-4750.2023.05.S010

    YANG Xin, ZHANG Jubing, LI Xiaolong, et al. Thermal deformation of a steel truss bridge based on monitoring data [J]. Engineering Mechanics, 2024, 41(Suppl 1): 310 − 316. (in Chinese) doi: 10.6052/j.issn.1000-4750.2023.05.S010
    [21]
    陈桂生, 程小卫, 李易. 湿式连接装配式混凝土梁柱子结构连续倒塌的精细数值分析[J]. 工程力学, 2024, 41(增刊1): 157 − 164. doi: 10.6052/j.issn.1000-4750.2023.05.S005

    CHEN Guisheng, CHENG Xiaowei, LI Yi. A detailed numerical analysis for progressive collapse of precasted concrete frame substructures with wet connections [J]. Engineering Mechanics, 2024, 41(Suppl 1): 157 − 164. (in Chinese) doi: 10.6052/j.issn.1000-4750.2023.05.S005
  • Related Articles

    [1]CHEN Yu-liang, JIANG Rui, CHEN Zong-ping, ZHANG Shao-song. FAILURE MECHANISM AND STRENGTH CALCULATION OF COMPOSITE SHEAR STEEL FIBER RECYCLED CONCRETE[J]. Engineering Mechanics, 2023, 40(3): 88-97, 128. DOI: 10.6052/j.issn.1000-4750.2021.08.0677
    [2]HUANG Si-ning, GUO Xun, SUN De-zhang, GUO You-hai, Tarasenko A A. SHAKING TABLE TEST ON FAILURE MECHANISM OF RC FRAME WITH EXTERIOR CORRIDOR[J]. Engineering Mechanics, 2016, 33(12): 63-71,85. DOI: 10.6052/j.issn.1000-4750.2015.06.0473
    [3]CHENG Xuan-sheng, ZHANG Ai-jun, REN Yi, LIU Chao, CAO Liang-liang. FAILURE MECHANISM AND ANTI-COLLAPSE MEASURES OF MASONRY STRUCTURE UNDER DEBRIS FLOW[J]. Engineering Mechanics, 2015, 32(8): 156-163. DOI: 10.6052/j.issn.1000-4750.2014.01.0084
    [4]LIU Fei, LUO Qi-zhi, JIANG Zhi-gang. DYNAMIC RESPONSES AND FAILURE MECHANISM OF RC BEAMS TO LOW VELOCITY IMPACT[J]. Engineering Mechanics, 2015, 32(5): 155-161. DOI: 10.6052/j.issn.1000-4750.2013.11.1089
    [5]WANG Ni, CHEN Zong-ping, CHEN Yu-liang. FAILURE MECHANISM AND DAMAGE ANALYSIS OF SPACE CORNER JOINTS OF SRC L-SHAPED COLUMNS UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2015, 32(3): 140-150. DOI: 10.6052/j.issn.1000-4750.2013.10.0908
    [6]SHI Wei-wei, WANG Jing-feng, SHENG Hong-yu, YAO Bin. MECHANICAL BEHAVIOR AND FAILURE MECHANISM OF EXTENDED ENDPLATE CONNECTIONS TO SQUARE STEEL TUBULAR COLUMNS AT HIGH TEMPERATURE[J]. Engineering Mechanics, 2013, 30(增刊): 248-252. DOI: 10.6052/j.issn.1000-4750.2012.05.S083
    [7]WANG Guang-yong. FAILURE MECHANISM OF STEEL REINFORCED CONCRETE PLANE FRAMES SUBJECTED TO FIRE[J]. Engineering Mechanics, 2012, 29(12): 156-162,169. DOI: 10.6052/j.issn.1000-4750.2011.04.0232
    [8]HU Zong-bo. STUDY ON DESIGN METHOD FOR IRREGULAR JOINTS BETWEEN STEEL BOX COLUMNS AND BEAMS[J]. Engineering Mechanics, 2012, 29(11): 191-196,235. DOI: 10.6052/j.issn.1000-4750.2011.04.0187
    [9]PENG Xiao-tong, GU Qiang. THE FAILURE MECHANISM AND PLASTIC ANALYSIS OF COMPOSITE STEEL FRAME-REINFORCED CONCRETE INFILL WALL STRUCTURES[J]. Engineering Mechanics, 2011, 28(8): 56-061.
    [10]DESIGN RECOMMENDATIONS ON FLEXURAL CAPACITY OF FRP-REINFORCED CONCRETE BEAMS[J]. Engineering Mechanics, 2009, 26(1): 79-085.

Catalog

    Article Metrics

    Article views (1) PDF downloads (0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return