LIU Qing-kuan, CHANG Xing, HAN Peng, SHAO Lin-yuan, CHU Ze-kai, SUN Yi-fei. STUDY ON AERODYNAMIC FORCE AND VORTEX-INDUCED VIBRATION CHARACTERISTICS OF STAY CABLES WITH LONGITUDINAL RIBS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.01.0069
Citation: LIU Qing-kuan, CHANG Xing, HAN Peng, SHAO Lin-yuan, CHU Ze-kai, SUN Yi-fei. STUDY ON AERODYNAMIC FORCE AND VORTEX-INDUCED VIBRATION CHARACTERISTICS OF STAY CABLES WITH LONGITUDINAL RIBS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.01.0069

STUDY ON AERODYNAMIC FORCE AND VORTEX-INDUCED VIBRATION CHARACTERISTICS OF STAY CABLES WITH LONGITUDINAL RIBS

More Information
  • Received Date: January 30, 2023
  • Revised Date: May 11, 2023
  • Available Online: June 01, 2023
  • Longitudinal ribs are set as one of the aerodynamic suppression measures for stay cable to suppress the wind-rain vibrations, which can suppress the vibration by preventing the formation of the waterline. However, in practical engineering, it is found that in addition to wind-rain vibration, vortex-induced vibration often occurs in stay cables at low wind speed, which is likely to cause fatigue damage of structures. Whether the longitudinal ribs used to suppress wind-rain vibration can suppress vortex-induced vibration and how the aerodynamic characteristics of stay cables with additional longitudinal ribs change are very concerned in wind-resistant design. The changes of aerodynamic force and vortex-induced vibration characteristics of stay cables with 2, 3, 4, 6, 8 and 12 ribs at different wind attack angles (The angle between the direction of the wind and the horizontal direction of the model) were studied by wind tunnel test. The results show that for the circumferential average wind pressure distribution, the Reynolds number corresponding to the asymmetric distribution of the circumferential average wind pressure coefficient decreases under a small wind attack angle in the stay cables with two ribs and three ribs. Under the large wind attack angle, similar phenomenon are observed in the stay cables with 4, 6, 8 and 12 ribs, and the increase of Reynolds number has no effect on the circumferential average wind pressure distribution. For the average drag coefficient, the phenomena that the average drag coefficient decreases with the increase of Reynolds number occurs first in the stay cables with two ribs and three ribs under a small wind attack angle. Under the large wind attack angle, the increase of Reynolds number has no effect on the average drag coefficient, which is consistent with the cases of 4, 6, 8 and 12 ribs. For vortex-induced vibration, compared with the cable without ribs, the ribs of the cables with 2 ribs and 3 ribs can reduce the maximum amplitude. For the cables with 4, 6 and 8 ribs, the change of the maximum amplitude is not obvious. The cable with 12 ribs has the best suppression effect at 15° wind attack angle, which is reduced by about 35%. Therefore, in practical engineering applications, the vibration suppression effect and aerodynamic force should be considered comprehensively.

  • [1]
    TALLEY S, IACCARINO G, MUNGAL G, et al. An experimental and computational investigation of flow past cacti [C]// Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, 2001: 51 − 63.
    [2]
    YAMAGISHI Y, OKI M. Effect of the number of grooves on flow characteristics around a circular cylinder with triangular grooves [J]. Journal of Visualization, 2005, 8(1): 57 − 64. doi: 10.1007/BF03181603
    [3]
    SONG X W, QI Y C, ZHANG M X, et al. Application and optimization of drag reduction characteristics on the flow around a partial grooved cylinder by using the response surface method [J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 158 − 176. doi: 10.1080/19942060.2018.1562382
    [4]
    WANG J G, JAKOBSEN J B, MCTAVISH S, et al. Aerodynamic performance of a grooved cylinder in flow conditions encountered by bridge stay cables in service [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 80 − 89. doi: 10.1016/j.jweia.2019.02.009
    [5]
    FLAMAND O. Rain-wind induced vibration of cables [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 353 − 362.
    [6]
    CHANG Y, ZHAO L, GE Y J. Experimental investigation on mechanism and mitigation of rain–wind-induced vibration of stay cables [J]. Journal of Fluids and Structures, 2019, 88: 257 − 274.
    [7]
    刘志文, 沈静思, 陈政清, 等. 斜拉索涡激振动气动控制措施试验研究[J]. 振动工程学报, 2021, 34(3): 441 − 451.

    LIU Zhiwen, SHEN Jingsi, CHEN Zhengqing, et al. Experimental study on aerodynamic control measures of vortex-induced vibration for stay-cable [J]. Journal of Vibration Engineering, 2021, 34(3): 441 − 451. (in Chinese)
    [8]
    GU M, DU X Q. Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitigation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(1): 79 − 95. doi: 10.1016/j.jweia.2004.09.003
    [9]
    刘庆宽, 郑云飞, 赵善博, 等. 螺旋线参数对斜拉索风雨振抑振效果的试验研究[J]. 工程力学, 2016, 33(10): 138 − 144. doi: 10.6052/j.issn.1000-4750.2014.12.1007

    LIU Qingkuan, ZHENG Yunfei, ZHAO Shanbo, et al. Experimental study on helical line parameters and rain-wind induced vibration control of stay-cables [J]. Engineering Mechanics, 2016, 33(10): 138 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.12.1007
    [10]
    刘庆宽, 李聪辉, 郑云飞, 等. 缠绕螺旋线的斜拉桥斜拉索平均气动阻力特性的试验研究[J]. 土木工程学报, 2017, 50(5): 97 − 104.

    LIU Qingkuan, LI Conghui, ZHENG Yunfei, et al. Experimental study on mean drag force coefficients of stay cables with helical lines [J]. China Civil Engineering Journal, 2017, 50(5): 97 − 104. (in Chinese)
    [11]
    MATSUMOTO M, SAITOH T, KITAZAWA M, et al. Response characteristics of rain-wind induced vibration of stay-cables of cable-stayed bridges [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 323 − 333.
    [12]
    胡圣江, 周述华. 斜拉索雨振及气动制振措施的模型风洞试验研究[C]. 第五届全国风工程及工业空气动力学学术会议论文集. 张家界: 中国空气动力学会, 1998: 264 − 270.

    HU Shengjiang, ZHOU Shuhua. Model wind tunnel test research on rain vibration and aerodynamic damping measures of stay cables [C]// Proceedings of the 5th National Conference on Wind Engineering and Industrial Aerodynamics. Zhangjiajie: China Aeromechanics Society, 1998: 264 − 270. (in Chinese)
    [13]
    HUNG V D, KATSUCHI H, SAKAKI I, et al. Aerodynamic performance of spiral-protuberance cable under rain and dry conditions [J]. Journal of Structural Engineering, 2016, 62A: 431 − 441.
    [14]
    BI J H, QIAO H Y, NIKITAS N, et al. Numerical modelling for rain wind induced vibration of cables with longitudinal ribs [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 178: 69 − 79. doi: 10.1016/j.jweia.2018.05.002
    [15]
    刘宗杰. 大跨度斜拉桥涡激振动现场实测与风洞试验研究[D]. 长沙: 湖南大学, 2021.

    LIU Zongjie. Field measurement and wind tunnel test study of vortex-induced vibration of long-span cable-stayed bridge [D]. Changsha: Hunan University, 2021. (in Chinese)
    [16]
    祝志文, 李健鹏, 蔡晶垚, 等. 运营状态斜拉桥考虑拉索涡激振动的钢锚箱疲劳实测研究[J]. 振动工程学报, 2021, 34(1): 9 − 19.

    ZHU Zhiwen, LI Jianpeng, CAI Jingyao, et al. Field investigation on fatigue of steel anchor box in cable-stayed bridge under in-service condition considering vortex-induced cable vibration [J]. Journal of Vibration Engineering, 2021, 34(1): 9 − 19. (in Chinese)
    [17]
    郑云飞. 表面状态对斜拉索气动力和风致振动影响的试验研究[D]. 石家庄: 石家庄铁道大学, 2018.

    ZHENG Yunfei. Experimental study on effect of surface state on aerodynamic force and wind-induced vibration of stay cables [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2018. (in Chinese)
    [18]
    陈文礼, 陈冠斌, 黄业伟, 等. 斜拉索涡激振动的被动自吸吹气流动控制[J]. 中国公路学报, 2019, 32(10): 222 − 229.

    CHEN Wenli, CHEN Guanbin, HUANG Yewei, et al. Vortex-induced vibration control of a stay cable based on the passive-suction-jet method [J]. China Journal of Highway and Transport, 2019, 32(10): 222 − 229. (in Chinese)
    [19]
    CHEN W L, ZHANG Q Q, LI H, et al. An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow [J]. Journal of Fluids and Structures, 2015, 54: 297 − 311. doi: 10.1016/j.jfluidstructs.2014.11.007
    [20]
    刘庆宽, 郑云飞, 刘小兵, 等. 斜拉桥斜拉索的风荷载、风致振动与控制[J]. 工程力学, 2015, 32(9): 1 − 8. doi: 10.6052/j.issn.1000-4750.2014.06.ST04

    LIU Qingkuan, ZHENG Yunfei, LIU Xiaobing, et al. Wind load, wind induced vibrations and control of cables of cable-stayed bridges [J]. Engineering Mechanics, 2015, 32(9): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.06.ST04
    [21]
    刘庆宽. 多功能大气边界层风洞的设计与建设[J]. 实验流体力学, 2011, 25(3): 66 − 70.

    LIU Qingkuan. Aerodynamic and structure desigh of multifunction boundary-layer wind tunnel [J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 66 − 70. (in Chinese)
    [22]
    郑云飞, 刘庆宽, 刘小兵, 等. 端部状态对斜拉索节段模型气动特性的影响[J]. 工程力学, 2017, 34(增刊 1): 192 − 196. doi: 10.6052/j.issn.1000-4750.2016.03.S036

    ZHENG Yunfei, LIU Qingkuan, LIU Xiaobing, et al. Influence of end conditions on aerodynamic force of section models for stay-cables [J]. Engineering Mechanics, 2017, 34(Suppl 1): 192 − 196. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.S036
    [23]
    ZDRAVKOVICH M M. Flow around circular cylinders [M]. Oxford: Oxford University Press, 1997: 19−198.
    [24]
    孙一飞, 邵林媛, 刘庆宽, 等. 波浪形斜拉索的气动力及风致振动特性[J]. 湖南大学学报(自然科学版), 2022, 49(5): 44 − 54.

    SUN Yifei, SHAO Linyuan, LIU Qingkuan, et al. Aerodynamic forces and wind induced vibrations characteristics of wavy stay cables [J]. Journal of Hunan University (Natural Sciences), 2022, 49(5): 44 − 54. (in Chinese)
    [25]
    FARELL C, BLESSMANN J. On critical flow around smooth circular cylinders [J]. Journal of Fluid Mechanics, 1983, 136: 375 − 391. doi: 10.1017/S0022112083002190
    [26]
    马文勇, 袁欣欣, 张晓斌, 等. 圆形断面在35 k~330 k雷诺数范围的气动力特性研究[J]. 工程力学, 2015, 32(增刊 1): 348 − 352. doi: 10.6052/j.issn.1000-4750.2014.05.S022

    MA Wenyong, YUAN Xinxin, ZHANG Xiaobin, et al. Characteristics of aerodynamic forces on a circular cylinder at Reynolds numbers from 35k to 330k [J]. Engineering Mechanics, 2015, 32(Suppl 1): 348 − 352. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.05.S022
    [27]
    安苗, 刘庆宽, 孙一飞, 等. 波浪形圆柱的气动力特性试验研究[J]. 振动与冲击, 2021, 40(8): 209 − 215.

    AN Miao, LIU Qingkuan, SUN Yifei, et al. Experimental study on aerodynamic characteristics of a wavy cylinder [J]. Journal of Vibration and Shock, 2021, 40(8): 209 − 215. (in Chinese)
    [28]
    刘庆宽, 闫煦东, 李聪辉, 等. 不同粗糙度斜拉索气动力特性和风荷载计算方法研究[J]. 振动与冲击, 2017, 36(23): 38 − 44, 57.

    LIU Qingkuan, YAN Xudong, LI Conghui, et al. Aerodynamic forces and wind loads calculation method for stay-cables with different surface roughness [J]. Journal of Vibration and Shock, 2017, 36(23): 38 − 44, 57. (in Chinese)
    [29]
    MA W Y, DU Z, ZHANG X B, et al. A novel drag reduction and vortex shedding mitigation measure for a circular cylinder in the subcritical regime [J]. Fluid Dynamics Research, 2021, 53(1): 015504.
    [30]
    LARSEN A. A generalized model for assessment of vortex-induced vibrations of flexible structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 57(2/3): 281 − 294.
    [31]
    WANG R, XIN D B, OU J P. Experimental investigation on suppressing circular cylinder VIV by a flow control method based on passive vortex generators [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 187: 36 − 47. doi: 10.1016/j.jweia.2019.01.017
    [32]
    GABBAI R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders [J]. Journal of sound and vibration, 2005, 282(3/4/5): 575 − 616.
    [33]
    RAGHAVAN K, BERNITSAS M M. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports [J]. Ocean Engineering, 2011, 38(5/6): 719 − 731.
    [34]
    WANG C L, TANG H, DUAN F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets [J]. Journal of Fluids and Structures, 2016, 60: 160 − 179. doi: 10.1016/j.jfluidstructs.2015.11.003
    [35]
    GAO D L, CHEN W L, LI H, et al. Flow around a circular cylinder with slit [J]. Experimental Thermal and Fluid Science, 2017, 82: 287 − 301. doi: 10.1016/j.expthermflusci.2016.11.025
    [36]
    孙一飞, 刘庆宽, 王仰雪, 等. O型套环对斜拉索涡激振动影响的试验研究[J]. 工程力学, 2023, 40(7): 239 − 248. doi: 10.6052/j.issn.1000-4750.2022.10.0873

    SUN Yifei, LIU Qingkuan, WANG Yangxue, et al. Experimental study on effect of O-Rings on vortex-induced vibrations of stay cables [J]. Engineering Mechanics, 2023, 40(7): 239 − 248. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.10.0873
    [37]
    刘庆宽, 邵林媛, 孙一飞, 等. 螺旋线对斜拉索涡激振动特性影响的试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(11): 25 − 35.

    LIU Qingkuan, SHAO Linyuan, SUN Yifei, et al. Experimental study on influence of helical lines on vortex-induced vibration characteristics of stay cables [J]. Journal of Hunan University (Natural Sciences), 2023, 50(11): 25 − 35. (in Chinese)
    [38]
    王仰雪, 刘庆宽, 靖洪淼, 等. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究[J]. 振动与冲击, 2023, 42(6): 232 − 239, 254.

    WANG Yangxue, LIU Qingkuan, JING Hongmiao, et al. Experimental study on the influence of inclined railings on the vortex-induced vibration performance of a streamlined box girder [J]. Journal of Vibration and Shock, 2023, 42(6): 232 − 239, 254. (in Chinese)
    [39]
    高东来, 余海洋, 陈文礼, 等. 基于结构化多孔表面定常吸气的圆柱绕流场控制[J]. 工程力学, 2023. doi: 10.6052/j.issn.1000-4750.2022.05.0435

    GAO Donglai, YU Haiyang, CHEN Wenli, et al. Control of flow passing a circular cylinder by steady suction based on a structured porous surface [J]. Engineering Mechanics, 2023. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.0435
    [40]
    苏宁, 彭士涛, 洪宁宁. 高耸烟囱结构调谐质量惯容阻尼器(TMDI)风振控制方法及效果研究[J]. 工程力学, 2022, 39(11): 143 − 156. doi: 10.6052/j.issn.1000-4750.2021.06.0490

    SU Ning, PENG Shitao, HONG Ningning. The wind-induced vibration control of high-rise chimneys by a tuned mass damper inerter (TMDI) [J]. Engineering Mechanics, 2022, 39(11): 143 − 156. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.06.0490
    [41]
    王梁坤, 施卫星, 周颖. 自适应变刚度TMD的模型试验与数值模拟研究[J]. 工程力学, 2023, 40(增刊 1): 295 − 302. doi: 10.6052/j.issn.1000-4750.2022.05.S014

    WANG Liangkun, SHI Weixing, ZHOU Ying. Experimental and numerical study on adaptive adjustable stiffness tuned mass damper [J]. Engineering Mechanics, 2023, 40(Suppl 1): 295 − 302. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.05.S014
    [42]
    HUANG Y F, YANG J X. Numerical simulation on the aerodynamic characteristics effect of ribs acting on the stay cable [C].// Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering. Curran Associates , 2015: 2191 − 2195.
    [43]
    SKEIDE A K, BARDAL L M, OGGIANO L, et al. The significant impact of ribs and small-scale roughness on cylinder drag crisis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104192. doi: 10.1016/j.jweia.2020.104192
    [44]
    乔浩玥. 抑制斜拉索风雨激振的纵向肋条措施的减振机理研究[D]. 天津: 天津大学, 2019.

    QIAO Haoyue. Mechanism study on longitudinal ribs mitigation of rain-wind induced vibrationof stay cable [D]. Tianjin: Tianjin University, 2019. (in Chinese)
    [45]
    孙磊. V沟槽结构表面圆柱绕流减阻特性研究[D]. 镇江: 江苏科技大学, 2020.

    SUN Lei. Study on drag reduction characteristics of Cylindrical flow around V grooved surface surface [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. (in Chinese)
    [46]
    HOANG M C, LANEVILLE A, LÉGERON F. Experimental study on aerodynamic coefficients of yawed cylinders [J]. Journal of Fluids and Structures, 2015, 54: 597 − 611. doi: 10.1016/j.jfluidstructs.2015.01.002
    [47]
    李书琼. 超长拉索高阶振动现场实测及试验研究[D]. 长沙: 湖南大学, 2021.

    LI Shuqiong. Field measurement and experimental study on high-mode vibration of super-long stay cables [D]. Changsha: Hunan University, 2021. (in Chinese)
    [48]
    沈静思. 大跨度斜拉桥拉索高阶涡振现象及气动控制措施研究[D]. 长沙: 湖南大学, 2020.

    SHEN Jingsi. Study on high-mode vortex vibration of cable and aerodynamic control measures for long-span cable-stayed bridge [D]. Changsha: Hunan University, 2020. (in Chinese)
  • Related Articles

    [1]DENG Yang, SHEN Li-xin, WU Jing-shu, LI Ai-qun, LI Yu-hang. FINITE ELEMENT MODEL UPDATING AND DAMAGE PREDICTION METHOD OF HISTORICAL TIMBER BUILDINGS CONSIDERING EXISTING DAMAGE[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2024.07.0541
    [2]ZHAO Chao, DAI Zhi-cheng, ZHONG Xin-gu, CHEN Qian-qian. A TWO-PHASE MODELING METHOD BASED ON COHESIVE ELEMENTS FOR MASONRY ARCHES[J]. Engineering Mechanics, 2021, 38(12): 97-106, 117. DOI: 10.6052/j.issn.1000-4750.2020.11.0826
    [3]WU Zhi-jun, ZHANG Peng-lin, LIU Quan-sheng, LI Wan-feng, JIANG Wei-zhong. DYNAMIC FAILURE ANALYSIS OF REINFORCED CONCRETE SLAB BASED ON COHESIVE ELEMENT UNDER EXPLOSIVE LOAD[J]. Engineering Mechanics, 2018, 35(8): 79-90,110. DOI: 10.6052/j.issn.1000-4750.2017.04.0270
    [4]ZHOU Qing-chun, JU Yu-tao, ZHOU Chang-sheng. AN EFFECTIVE INVERSE ANALYSIS OF COHESIVE PARAMETERS OF FLEXIBLE ADHESIVE JOINTS BASED ON THE HOOKE-JEEVES ALGORITHM[J]. Engineering Mechanics, 2015, 32(4): 1-7. DOI: 10.6052/j.issn.1000-4750.2013.10.0942
    [5]DING Yang, GE Jin-gang, LI Zhong-xian. ANALYSIS ON ULTIMATE BEARING CAPACITY OF RETICULATED SHELL CONSIDERING CUMULATIVE DAMAGE AND INSTABILITY OF MEMBER[J]. Engineering Mechanics, 2012, 29(5): 13-18,30.
    [6]XIN Ke-gui, HE Ming-hua. RESEARCH ON DISTRIBUTED COHESIVE ELEMENT METHOD[J]. Engineering Mechanics, 2011, 28(增刊Ⅱ): 109-128.
    [7]ZHI Xu-dong, FAN Feng, SHEN Shi-zhao. FAILURE MODES OF RETICULATED SHELLS SUBJECTED TO EARTHQUAKES[J]. Engineering Mechanics, 2010, 27(1): 63-068.
    [8]ZHANG Da-chang, NOGUCHI Hiroshi. DEVELOPMENT OF FEA MODELS OF RC SLABS AND SHEAR WALLS CONSIDERING DAMAGE ACCUMULATION UNDER REVERSE CYCLIC LOADING[J]. Engineering Mechanics, 2007, 24(1): 88-095.
    [9]WU De-fei, TONG Gen-shu. DAMAGE ACCUMULATION,FRACTURE AND POST FRACTURE ANALYSES FOR INITIALLY FLAWED STEEL STRUCTURES[J]. Engineering Mechanics, 2006, 23(8): 160-167.
    [10]DING Yang, GUO Feng, LI Zhong-xian. ELASTO-PLASTIC ANALYSIS OF SPATIAL TRUSSES UNDER EARTHQUAKE EXCITATIONS CONSIDERING DAMAGE ACCUMULATION EFFECT[J]. Engineering Mechanics, 2005, 22(1): 54-58.
  • Cited by

    Periodical cited type(1)

    1. 董新闻,张勇康,张磊. 复材界面剪切强度对铝模板粘接性能的影响分析. 粘接. 2024(06): 4-7 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (79) PDF downloads (24) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return