Citation: | WANG Guang-yong, SU Heng, LIU Wei-hua, LIU Ren-jie. FIRE PERFORMANCE OF SRC FRAME STRUCTURES UNDER HORIZONTAL LOADS[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.01.0059 |
In the event of fire, high-rise building structures may be subjected to horizontal loads, which are crucial in the fire-resistant design of high-rise building structures. In order to investigate the fire performance of SRC-RC frame structures under horizontal loads, finite element analysis method is used in this paper to systematically analyze the deformation behavior, failure mode, working mechanism and fire resistance limit of these structures subjected to horizontal loads. In the analysis, many parameters such as the fire location, axial compression ratio of columns and horizontal load ratio are taken into account. The analysis results show that horizontal loads have a significant impact on the fire resistance of SRC frame structures. There are two typical failure modes observed under the combined action of horizontal loads and fire. The first is the overturning failure of the frame, during which the fire resistance limit of the frame decreases with the increase of the shear force on the fire-exposed floors, and the second is the frame beam failure, in which the change in the fire resistance limit of the frame is relatively small. Finally, the failure modes of frame structures under horizontal loads and a simplified calculation model for fire-resistant design are proposed.
[1] |
FUJIBE F. Localized strong winds associated with extensive fires in central Tokyo: Cases of the Great Kanto Earthquake (1923) and an air attack in World War II (1945) [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 181: 79 − 84. doi: 10.1016/j.jweia.2018.08.016
|
[2] |
CEN EN 1991-1-2, Eurocode 1: Actions on structures-Part 1-2: General actions-actions on structures exposed to fire [S]. Brussels: European Committee for Standardization, 2002.
|
[3] |
LI S, LIEW J Y R, XIONG M X, et al. Experimental investigation on fire resistance of high-strength concrete encased steel composite columns [J]. Fire Safety Journal, 2021, 121: 103273. doi: 10.1016/j.firesaf.2020.103273
|
[4] |
LI S, LIEW J Y R, XIONG M X. Fire performance of composite columns made of high strength steel and concrete [J]. Journal of Constructional Steel Research, 2021, 181: 106640. doi: 10.1016/j.jcsr.2021.106640
|
[5] |
MARTINEZ J, JEFFERS A E. Structural response of steel-concrete composite floor systems under traveling fires [J]. Journal of Constructional Steel Research, 2021, 186: 106926. doi: 10.1016/j.jcsr.2021.106926
|
[6] |
LIE T T, IRWIN R J. Method to calculate the fire resistance of reinforced concrete columns with rectangular cross section [J]. Structural Journal, 1993, 90(1): 52 − 60.
|
[7] |
YU J T, LU Z D, XIE Q. Nonlinear analysis of SRC columns subjected to fire [J]. Fire Safety Journal, 2007, 42(1): 1 − 10. doi: 10.1016/j.firesaf.2006.06.006
|
[8] |
郑蝉蝉, 王广勇, 李引擎. 轴向约束型钢混凝土柱耐火性能试验研究[J]. 建筑结构学报, 2022, 43(8): 154 − 161.
ZHENG Chanchan, WANG Guangyong, LI Yinqing. Fire performance of axially restrained steel reinforced concrete columns [J]. Journal of Building Structures, 2022, 43(8): 154 − 161. (in Chinese)
|
[9] |
张建春, 张大山, 董毓利, 等. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183 − 192, 210. doi: 10.6052/j.issn.1000-4750.2018.05.0281
ZHANG Jianchun, ZHANG Dashan, DONG Yuli, et al. Experimental study on internal force variation of steel-concrete composite beam under fire [J]. Engineering Mechanics, 2019, 36(6): 183 − 192, 210. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0281
|
[10] |
丁发兴, 王文君, 蒋彬辉, 等. 火灾下钢筋混凝土简支板力学响应机理[J]. 工程力学, 2023, 40(2): 222 − 231. doi: 10.6052/j.issn.1000-4750.2021.08.0664
DING Faxing, WANG Wenjun, JIANG Binhui, et al. Mechanical response of simply supported reinforced concrete slabs under fire [J]. Engineering Mechanics, 2023, 40(2): 222 − 231. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0664
|
[11] |
王勇, 马帅, 张亚军, 等. 火灾蔓延作用下混凝土连续板力学行为试验研究与模拟[J]. 工程力学, 2020, 37(3): 202 − 216. doi: 10.6052/j.issn.1000-4750.2019.04.0238
WANG Yong, MA Shuai, ZHANG Yajun, et al. Experimental study and numerical analysis of concrete continuous slabs subject to traveling fire [J]. Engineering Mechanics, 2020, 37(3): 202 − 216. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.0238
|
[12] |
时旭东, 过镇海. 高温下钢筋混凝土框架的受力性能试验研究[J]. 土木工程学报, 2000, 33(1): 36 − 45.
SHI Xudong, GUO Zhenhai. Experimental investigation of behavior of reinforced concrete frames at elevated temperature [J]. China Civil Engineering Journal, 2000, 33(1): 36 − 45. (in Chinese)
|
[13] |
BAILEY C. Holistic behaviour of concrete buildings in fire [J]. Structures and Buildings, 2002, 152(3): 199 − 212.
|
[14] |
WANG Y C. An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests [J]. Engineering Structures, 2000, 22(5): 401 − 412. doi: 10.1016/S0141-0296(98)00127-8
|
[15] |
FOSTER S, CHLADNÁ M, HSIEH C, et al. Thermal and structural behaviour of a full-scale composite building subject to a severe compartment fire [J]. Fire Safety Journal, 2007, 42(3): 183 − 199. doi: 10.1016/j.firesaf.2006.07.002
|
[16] |
CVETKOVSKA M, KNEZEVIC M, XU Q, et al. Fire scenario influence on fire resistance of reinforced concrete frame structure [J]. Procedia Engineering, 2018, 211: 28 − 35. doi: 10.1016/j.proeng.2017.12.134
|
[17] |
王广勇, 刘人杰, 郑蝉蝉. 火灾降温阶段型钢混凝土框架结构受力性能研究[J]. 建筑结构学报, 2022, 43(8): 124 − 132.
WANG Guangyong, LIU Renjie, ZHENG Chanchan. Mechanical performance of steel reinforced concrete frame structures during fire including a cooling phase [J]. Journal of Building Structures, 2022, 43(8): 124 − 132. (in Chinese)
|
[18] |
王广勇, 孙旋, 张东明, 等. 型钢混凝土框架结构耐火性能有限元分析[J]. 建筑结构学报, 2022, 43(2): 65 − 75.
WANG Guangyong, SUN Xuan, ZHANG Dongming, et al. Finite element analysis of fire resistance of steel reinforced concrete frame structures [J]. Journal of Building Structures, 2022, 43(2): 65 − 75. (in Chinese)
|
[19] |
MAZZA F. Wind and earthquake dynamic responses of fire-exposed steel framed structures [J]. Soil Dynamics and Earthquake Engineering, 2015, 78: 218 − 229. doi: 10.1016/j.soildyn.2015.08.005
|
[20] |
SHINTANI Y, NISHIMURA T, OKAZAKI T, et al. Experimental study on the fire resistance of unprotected concrete-filled steel tubular columns under multi-loading [J]. Fire Safety Journal, 2021, 120: 103174. doi: 10.1016/j.firesaf.2020.103174
|
[21] |
GB 50016−2014, 建筑设计防火规范[S]. 北京: 中国计划出版社, 2014.
GB 50016−2014, Code for fire protection design of buildings [S]. Beijing: China Planning Press, 2014. (in Chinese)
|
[22] |
ISO 834-1: 1999, Fire-resistance tests − elements of building construction − part 1: General requirements [S]. Geneva: ISO, 1999.
|
[23] |
王广勇, 张东明, 郑蝉蝉, 等. 考虑受火全过程的高温作用后型钢混凝土柱力学性能研究及有限元分析[J]. 建筑结构学报, 2016, 37(3): 44 − 50.
WANG Guangyong, ZHANG Dongming, ZHENG Chanchan, et al. Post fire performance of steel reinforced concrete columns subjected to fire including cooling phase [J]. Journal of Building Structures, 2016, 37(3): 44 − 50. (in Chinese)
|