YAN Qiu-shi, REN Peng-cheng, ZHAO Dong-dong, YANG Lu. STUDY ON DYNAMIC MECHANICAL BEHAVIOR AND TENSION-COMPRESSION ASYMMETRY OF S30408 STAINLESS STEEL UNDER HIGH STRAIN RATE[J]. Engineering Mechanics, 2025, 42(2): 199-205. DOI: 10.6052/j.issn.1000-4750.2022.11.0967
Citation: YAN Qiu-shi, REN Peng-cheng, ZHAO Dong-dong, YANG Lu. STUDY ON DYNAMIC MECHANICAL BEHAVIOR AND TENSION-COMPRESSION ASYMMETRY OF S30408 STAINLESS STEEL UNDER HIGH STRAIN RATE[J]. Engineering Mechanics, 2025, 42(2): 199-205. DOI: 10.6052/j.issn.1000-4750.2022.11.0967

STUDY ON DYNAMIC MECHANICAL BEHAVIOR AND TENSION-COMPRESSION ASYMMETRY OF S30408 STAINLESS STEEL UNDER HIGH STRAIN RATE

More Information
  • Received Date: November 11, 2022
  • Revised Date: March 18, 2023
  • Available Online: May 11, 2023
  • To investigate the dynamic mechanical properties and tensile-compression asymmetry of S30408 stainless steel, dynamic impact tests were carried out on stainless steel at three strain rates (1000 s−1、3000 s−1、5000 s−1) using Hopkinson tensile (SHTB) and pressure bar (SHPB) device, and static tensile and compression tests were carried out. The stress-strain curves of S30408 stainless steel under different conditions were obtained, and the analysis revealed that S30408 stainless steel has an obvious strain rate strengthening effect. There is a certain tensile-compression asymmetry in S30408 stainless steel under static conditions, which will be amplified under high strain rate conditions, and the plastic stress in S30408 stainless steel in compression is significantly larger than that in tension. Based on the experimental results, a modified Johnson-Cook model was established for tensile and compressive conditions, which can better reflect the dynamic mechanical properties of S30408 stainless steel and can provide a reference for the study of the mechanical properties of S30408 under high strain rates such as impact and explosion.

  • [1]
    班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1 − 23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01

    BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research advances of stainless-clad bimetallic steel structures [J]. Engineering Mechanics, 2021, 38(6): 1 − 23. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.ST01
    [2]
    HAN L H, XU C Y, TAO Z. Performance of concrete filled stainless steel tubular (CFSST) columns and joints: Summary of recent research [J]. Journal of Constructional Steel Research, 2019, 152: 117 − 131. doi: 10.1016/j.jcsr.2018.02.038
    [3]
    GARDNER L. Stability and design of stainless steel structures–Review and outlook [J]. Thin-Walled Structures, 2019, 141: 208 − 216. doi: 10.1016/j.tws.2019.04.019
    [4]
    BADDOO N R. Stainless steel in construction: A review of research, applications, challenges and opportunities [J]. Journal of Constructional Steel Research, 2008, 64(11): 1199 − 1206. doi: 10.1016/j.jcsr.2008.07.011
    [5]
    SONG B, CHEN W, ANTOUN B R, et al. Determination of early flow stress for ductile specimens at high strain rates by using a SHPB [J]. Experimental Mechanics, 2007, 47(5): 671 − 679. doi: 10.1007/s11340-007-9048-6
    [6]
    LEE W S, CHEN T H, LIN C F, et al. Dynamic mechanical response of biomedical 316L stainless steel as function of strain rate and temperature [J]. Bioinorganic Chemistry and Applications, 2011, 2011: 173782.
    [7]
    尚兵, 盛精, 王宝珍, 等. 不锈钢材料的动态力学性能及本构模型[J]. 爆炸与冲击, 2008, 28(6): 527 − 531.

    SHANG Bing, SHENG Jing, WANG Baozhen, et al. Dynamic mechanical behavior and constitutive model of stainless steel [J]. Explosion and Shock Waves, 2008, 28(6): 527 − 531. (in Chinese)
    [8]
    闫秋实, 孙博文, 杨璐. 高温高应变率下建筑不锈钢动态力学性能研究[J]. 华中科技大学学报(自然科学版), 2019, 47(5): 128 − 132.

    YAN Qiushi, SUN Bowen, YANG Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(5): 128 − 132. (in Chinese)
    [9]
    JIA S G, TAN Q H, YE J Y, et al. Experiments on dynamic mechanical properties of austenitic stainless steel S30408 and S31608 [J]. Journal of Constructional Steel Research, 2021, 179: 106556. doi: 10.1016/j.jcsr.2021.106556
    [10]
    杨海峰. 表征镁合金各向异性屈服行为和应变率影响的本构模型研究[D]. 北京: 北京交通大学, 2019.

    YANG Haifeng. Study on constitutive model of magnesium alloy considering anisotropy and strain rate [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [11]
    FU Xiuli, SHI Qihang, WANG Hui, et al. Effect analysis of high strain rate and anisotropy on tension-compression asymmetry of aluminum Alloy 7050 [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(3): 377 − 384.
    [12]
    毛萍莉, 刘正, 王长义, 等. 高应变速率下AZ31镁合金的各向异性及拉压不对称性[J]. 中国有色金属学报, 2012, 22(5): 1262 − 1269.

    MAO Pingli, LIU Zheng, WANG Changyi, et al. Anisotropy and asymmetry of as-extruded AZ31 magnesium alloy deformed under high strain rate [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(5): 1262 − 1269. (in Chinese)
    [13]
    张斌. α钛合金TA7拉伸与压缩力学行为的温度和应变率相关性研究[D]. 合肥: 中国科学技术大学, 2019.

    ZHANG Bin. Temperature and strain rate dependency of tension and compression behavior for a titanium alloy TA7 [D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
    [14]
    郑宝锋, 舒赣平, 沈晓明. 不锈钢材料常温力学性能试验研究[J]. 钢结构, 2011, 26(5): 1 − 6, 55.

    ZHENG Baofeng, SHU Ganping, SHEN Xiaoming. Experimental study on material properties of stainless steel at room temperature [J]. Steel Construction, 2011, 26(5): 1 − 6, 55. (in Chinese)
    [15]
    GB/T 34108−2017, 金属材料 高应变速率室温压缩试验方法[S]. 北京: 中国标准出版社, 2017.

    GB/T 34108−2017, Metallic materials—High strain rate compression test method at ambient temperature [S]. Beijing: Standards Press of China, 2017. (in Chinese)
    [16]
    GB/T 30069.1−2013, 金属材料 高应变速率拉伸试验 第1部分: 弹性杆型系统[S]. 北京: 中国标准出版社, 2013.

    GB/T 30069.1−2013, Metallic materials—Tensile testing at high strain rates—Part 1: Elastic-bar-type systems [S]. Beijing: Standards Press of China, 2013. (in Chinese)
    [17]
    XU D M, WAN X L, YU J X, et al. Effect of strain rate on microstructures and mechanical properties of Fe–18Cr–8Ni steel [J]. Materials Science and Technology, 2019, 35(2): 195 − 203. doi: 10.1080/02670836.2018.1548113
    [18]
    CADONI E, FORNI D. Austenitic stainless steel under extreme combined conditions of loading and temperature [J]. Journal of Dynamic Behavior of Materials, 2019, 5(3): 230 − 240. doi: 10.1007/s40870-019-00205-y
    [19]
    QIUSHI Y, CHENXU L, BOWEN S, et al. Dynamic mechanical behavior at elevated temperatures and high strain rates of structural stainless steel used in civil engineering [J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020094. doi: 10.1061/(ASCE)MT.1943-5533.0003132
    [20]
    CADONI E, FENU L, FORNI D. Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars [J]. Construction and Building Materials, 2012, 35: 399 − 407. doi: 10.1016/j.conbuildmat.2012.04.081
    [21]
    JONHSON G R, COOK W H. A constitutive model and data for metal subjected to large strains, high strain rates and high temperature [C]// Proceedings of the Seventh International Symposium on Ballistic, Hague, The Netherlands, 1983: 19 − 21.
    [22]
    韩亚威, 杨璐, 彭磊, 等. 高温高应变率下LY315钢材动态力学性能研究[J]. 建筑结构学报, 2023, 44(1): 319 − 326.

    HAN Yawei, YANG Lu, PENG Lei, et al. Study on dynamic mechanical behavior of LY315 steel at elevated temperature and high strain rate [J]. Journal of Building Structures, 2023, 44(1): 319 − 326. (in Chinese)
    [23]
    黄晓莹, 陶俊林. 三种建筑钢筋材料高应变率下拉伸力学性能研究[J]. 工程力学, 2016, 33(7): 184 − 189. doi: 10.6052/j.issn.1000-4750.2014.12.1064

    HUANG Xiaoying, TAO Junlin. Tensile mechanical properties research of three construction steel bars in high strain rate [J]. Engineering Mechanics, 2016, 33(7): 184 − 189. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.12.1064
    [24]
    徐佳沛, 苏琼, 吴昊. 近场爆炸下UHPC-FST墩柱的抗爆性能分析[J]. 工程力学, 2024, 41(10): 142 − 155. doi: 10.6052/j.issn.1000-4750.2022.08.0710

    XU Jiapei, SU Qiong, WU Hao. Performance of UHPC-FST pier column under near-range explosion [J]. Engineering Mechanics, 2024, 41(10): 142 − 155. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0710
    [25]
    杨旭, 王蕊, 赵晖, 等. 考虑上部质量的双柱CFST桥墩抗车辆撞击力学性能研究[J]. 工程力学, 2023, 40(9): 61 − 73. doi: 10.6052/j.issn.1000-4750.2022.01.0019

    YANG Xu, WANG Rui, ZHAO Hui, et al. Study on the impact resistance of double-column concrete-filled steel tubular bridge piers considering the superstructure mass [J]. Engineering Mechanics, 2023, 40(9): 61 − 73. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0019
  • Related Articles

    [1]HUANG Xiao-ying, TAO Jun-lin. TENSILE MECHANICAL PROPERTIES RESEARCH OF THREE CONSTRUCTION STEEL BARS IN HIGH STRAIN RATE[J]. Engineering Mechanics, 2016, 33(7): 184-189. DOI: 10.6052/j.issn.1000-4750.2014.12.1064
    [2]FANG Qin, KONG Xiang-zhen, WU Hao, GONG Zi-ming. DETERMINATION OF HOLMQUIST-JOHNSON-COOK CONSITIUTIVE MODEL PARAMETERS OF ROCK[J]. Engineering Mechanics, 2014, 31(3): 197-204. DOI: 10.6052/j.issn.1000-4750.2012.10.0780
    [3]ZHU Ya-zhi, MENG Shao-ping, SUN Wei-wei. CALCULATION OF LATERAL PRESSURE IN SQUAT SILO WITH LARGE DIAMETER UNDER ECCENTRIC DISCHARGE[J]. Engineering Mechanics, 2013, 30(8): 67-77. DOI: 10.6052/j.issn.1000-4750.2012.04.0251
    [4]SU Hao-yang, XU Jin-yu, BAI Er-lei, GAO Zhi-gang, CHEN Yong. STUDY OF IMPACT MECHANICAL RESPONSE AND STATISTICAL DAMAGE CONSTITUTIVE MODEL OF CERAMIC FIBER REINFORCED CONCRETE[J]. Engineering Mechanics, 2013, 30(6): 148-153. DOI: 10.6052/j.issn.1000-4750.2011.12.0851
    [5]XU Bin, CHEN Jun-ming, XU Ning. TEST ON STRAIN RATE EFFECTS AND ITS SIMULATION WITH DYNAMIC DAMADED PLASTICITY MODEL FOR RC SHEAR WALLS[J]. Engineering Mechanics, 2012, 29(1): 39-45,6.
    [6]Wang Huan-ran, Xie Shu-gang, Chen Da-nian, Yu Yu-ying, Liu Guo-qing. ON THE CHECKING OF FITTED CONSTITUTIVE RELATION OF AN MG-AL ALLOY UNDER UNIAXIAL COMPRESSION AT HIGH STRAIN RATES[J]. Engineering Mechanics, 2006, 23(9): 179-183.
    [7]REN Ai-di, ZHANG Qi-chang. THE FLUTTER STUDY OF A TWO-DIMENSIONAL AIRFOIL WITH ASYMMETRY FREEPLAY[J]. Engineering Mechanics, 2006, 23(9): 25-29.
    [8]LU Pei-yin, LI Qing-bin, ZHANG Li-xiang. DAMAGE MODEL FOR TENSION-COMPRESSION FATIGUE LOADING OF CONCRETE AND ITS VERIFICATION[J]. Engineering Mechanics, 2004, 21(3): 162-166,.
    [9]ZHU Huai-liang, CHEN Rong-kang. IMPACT RESPONSE OF A MULTI-SPAN BEAM WITH NONLINEAR NONSYMMETRIC SUPPORTS AND DAMPERS[J]. Engineering Mechanics, 2002, 19(2): 78-82.
    [10]CHEN Qing-zhong, ZHANG Mi, FENG Xing-mei, SHU Zhong-ying. REVIEW OF BIOTS EQUATION[J]. Engineering Mechanics, 2001, 18(6): 124-133.

Catalog

    Article Metrics

    Article views (187) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return