Citation: | WANG Ke-wen, ZHU Yi-lin, ZHAO Xiang, YU Chao, SHAO Yong-bo. DESIGN AND ENERGY ABSORPTION CAPACITY STUDY ON BIDENT-SHAPED SPATIAL SELF-LOCKED ENERGY ABSORBING SYSTEM[J]. Engineering Mechanics, 2024, 41(11): 57-66. DOI: 10.6052/j.issn.1000-4750.2022.08.0744 |
The self-locked energy absorbing system can avoid the lateral splashing of components under impact loading without external constraints, and hence has broad application prospects. However, for most of the existing self-locked energy absorbing systems, they can only maintain self-locking stability at specific directions, or the configuration is complexed and expensive to be manufactured, or the cross-sectional shape is irregular, leading to inconvenient for disassembly and assembly. These disadvantages greatly restrict the application and promotion of existing self-locked energy absorbing systems. To this end, a novel multidirectional self-locked energy absorbing system is proposed in this work. The system consists of thin-walled tubes with a bident-shaped cross-section, which is flexible and convenient to disassemble and to assemble. When the system proposed is subjected to impact loads, the tube grooves limit the displacement of the adjacent body tubes, achieve self-locking under impact loads in multiple spatial directions and, allow the system to be fully deformed and to absorb energy stably. Through finite element analysis, the systematically investigated is the effects of geometric parameters of a single bident tube and of the array profile size on the energy absorption characteristics of the system. Compared with the existing self-locked energy absorbing systems, it is also proved that the system proposed has superior energy absorption capacity.
[1] |
ELIOPOULOU E, PAPANIKOLAOU A, VOULGARELLIS M. Statistical analysis of ship accidents and review of safety level [J]. Safety science, 2016, 85: 282 − 292. doi: 10.1016/j.ssci.2016.02.001
|
[2] |
王乾, 蒋树屏, 刘海龙, 等. 城市道路隧道交通事故特征分析[J]. 地下空间与工程学报, 2019, 15(S1): 460 − 469.
WANG Qian, JIANG Shuping, LIU Hailong, et al. Analysis on traffic accident characteristics of urban road tunnels [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 460 − 469. (in Chinese)
|
[3] |
罗为东. 建筑施工高处坠落事故特征及防治研究[J]. 建筑安全, 2022, 37(1): 55 − 58. doi: 10.3969/j.issn.1004-552X.2022.01.016
LUO Weidong. Research on the characteristics and prevention of falling accidents from height in building construction [J]. Construction Safety, 2022, 37(1): 55 − 58. (in Chinese) doi: 10.3969/j.issn.1004-552X.2022.01.016
|
[4] |
LU G X, YU T X. Energy absorption of structures and materials [M]. Cambridge: Woodhead Publishing Limited, 2003: 385 − 400.
|
[5] |
胡俊, 王飞虎. 多种截面形状薄壁管轴向冲击吸能特性对比研究及优化设计[J]. 计算力学学报, 2016, 33(1): 9 − 14. doi: 10.7511/jslx201601002
HU Jun, WANG Feihu. Comparative analysis and optimization design of energy absorption characteristic of thin-walled tubes with various section geometries under axial impact [J]. Chinese Journal of Computational Mechanics, 2016, 33(1): 9 − 14. (in Chinese) doi: 10.7511/jslx201601002
|
[6] |
ZHOU H, XU P, XIE S C. Composite energy-absorbing structures combining thin-walled metal and honeycomb structures [J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(4): 394 − 405. doi: 10.1177/0954409716631579
|
[7] |
BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments [J]. Thin-Walled Structures, 2017, 118: 137 − 163. doi: 10.1016/j.tws.2017.05.018
|
[8] |
TRAN T. Crushing analysis of multi-cell thin-walled rectangular and square tubes under lateral loading [J]. Composite Structures, 2017, 160: 734 − 747. doi: 10.1016/j.compstruct.2016.10.106
|
[9] |
NIA A A, HAMEDANI J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries [J]. Thin-Walled Structures, 2010, 48(12): 946 − 954. doi: 10.1016/j.tws.2010.07.003
|
[10] |
XING J, XU P, YAO S G, et al. Study on the layout strategy of diaphragms to enhance the energy absorption of thin-walled square tubes [J]. Structures, 2021, 29: 294 − 304. doi: 10.1016/j.istruc.2020.11.024
|
[11] |
DENG X L, LIU W Y, LIN Z Q. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression [J]. Thin-Walled Structures, 2018, 130: 321 − 331. doi: 10.1016/j.tws.2018.06.002
|
[12] |
余同希. 利用金属塑性变形原理的碰撞能量吸收装置[J]. 力学进展, 1986, 16(1): 28 − 39.
YU Tongxi. Impact energy absorbing devices based upon the plastic deformation of metallic elements [J]. Advances in Mechanics, 1986, 16(1): 28 − 39. (in Chinese)
|
[13] |
CHEN Y L, QIAO C, QIU X M, et al. A novel self-locked energy absorbing system [J]. Journal of the Mechanics and Physics of Solids, 2016, 87: 130 − 149. doi: 10.1016/j.jmps.2015.11.008
|
[14] |
PAN J X, ZHU W Y, YANG K J, et al. Energy absorption of discretely assembled composite self-locked systems [J]. Composite Structures, 2022, 292: 115686. doi: 10.1016/j.compstruct.2022.115686
|
[15] |
YANG K J, QIAO C, XIONG F, et al. Theoretical investigation on the energy absorption of ellipse-shaped self-locked tubes [J]. Science China Physics, Mechanics & Astronomy, 2020, 63(9): 294611.
|
[16] |
CHEN Z B, WU Q Q, YANG H T, et al. A periodic dissipative system with self-locking capacity [J]. International Journal of Impact Engineering, 2022, 166: 104233. doi: 10.1016/j.ijimpeng.2022.104233
|
[17] |
ZHAO Y, CHEN L M, DU B, et al. Bidirectional self-locked energy absorbing system: Design and quasi-static compression properties [J]. Thin-Walled Structures, 2019, 144: 106366. doi: 10.1016/j.tws.2019.106366
|
[18] |
LIU Y Z, XIONG F, YANG K J, et al. A novel omnidirectional self-locked energy absorption system inspired by windmill [J]. Journal of Applied Mechanics, 2020, 87(8): 085001. doi: 10.1115/1.4047537
|
[19] |
YANG K J, SUN Y, YAO Y K, et al. A universal strategy for flexible, efficient and programmable crashworthiness under quasi-static and dynamic loadings based on plastic deformation of metals [J]. Materials & Design, 2022, 222: 111027.
|
[20] |
REID S R, REDDY T Y. Effects of strain rate on the dynamic lateral compression of tubes [C]// Proceedings 2nd Conference on Mechanical Properties of Materials at High Rates of Strain. Oxford: Institute of Physics Conference, 1979: 288 − 298.
|
[21] |
YANG K J, CHEN Y L, LIU S B, et al. Internally nested self-locked tube system for energy absorption [J]. Thin-Walled Structures, 2017, 119: 371 − 384. doi: 10.1016/j.tws.2017.06.014
|
[22] |
BAROUTAJI A, GILCHRIST M D, OLABI A G. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading [J]. Thin-Walled Structures, 2016, 98: 337 − 350. doi: 10.1016/j.tws.2015.10.001
|
[23] |
QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elements in Analysis and Design, 2015, 104: 89 − 101. doi: 10.1016/j.finel.2015.06.004
|
[24] |
朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428
ZHU Xiang, YIN Yao, WANG Rui, ret al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
|
[25] |
李显辉, 李文博, 朱翔, 等. 泡沫铝填充薄壁铝合金多胞板与单胞板吸能性能研究[J]. 工程力学, 2023, 40(11): 244 − 256. doi: 10.6052/j.issn.1000-4750.2022.08.0715
LI Xianhui, LI Wenbo, ZHU Xiang, et al. Study on energy absorption performance of thin-walled aluminum alloy multi-cell plate (MCP) and single-cell plate(SCP) filled with aluminum foam [J]. Engineering Mechanics, 2023, 40(11): 244 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.08.0715
|
[26] |
吉美娟, 郭彦峰, 付云岗, 等. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668
JI Meijuan, GUO Yanfeng, FU Yungang, et al. Study on drop impact cushioning performance of paper corrugated-honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668
|
[27] |
YANG K J, CHEN Y L, ZHANG L, et al. Shape and geometry design for self-locked energy absorption systems [J]. International Journal of Mechanical Sciences, 2019, 156: 312 − 328. doi: 10.1016/j.ijmecsci.2019.04.006
|
[28] |
BAROUTAJI A, GILCHRIST M D, SMYTH D, et al. Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading [J]. Thin-Walled Structures, 2015, 86: 121 − 131. doi: 10.1016/j.tws.2014.08.018
|
[29] |
沈春燕, 方海, 祝露, 等. 波纹腹板增强泡沫夹芯复合材料结构准静态压缩吸能特性[J]. 工程力学, 2023, 40(1): 121 − 131. doi: 10.6052/j.issn.1000-4750.2021.07.0585
SHEN Chunyan, FANG Hai, ZHU Lu, et al. Energy absorption properties of corrugated web reinforced foam core sandwich composites under quasi-static compression [J]. Engineering Mechanics, 2023, 40(1): 121 − 131. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0585
|