GUO Zhi-xi, XIAO Jun-hua. MECHANICAL PROPERTIES OF MULTI-ARC CONCAVE HONEYCOMB STRUCTURE WITH ADJUSTABLE POISSON'S RATIO[J]. Engineering Mechanics, 2023, 40(10): 204-212, 236. DOI: 10.6052/j.issn.1000-4750.2022.01.0093
Citation: GUO Zhi-xi, XIAO Jun-hua. MECHANICAL PROPERTIES OF MULTI-ARC CONCAVE HONEYCOMB STRUCTURE WITH ADJUSTABLE POISSON'S RATIO[J]. Engineering Mechanics, 2023, 40(10): 204-212, 236. DOI: 10.6052/j.issn.1000-4750.2022.01.0093

MECHANICAL PROPERTIES OF MULTI-ARC CONCAVE HONEYCOMB STRUCTURE WITH ADJUSTABLE POISSON'S RATIO

More Information
  • Received Date: January 19, 2022
  • Revised Date: April 19, 2022
  • Accepted Date: May 26, 2022
  • Available Online: May 26, 2022
  • A new type of multi-arc concave cell with adjustable Poisson's ratio is proposed. The structures of positive Poisson's ratio, zero Poisson's ratio and negative Poisson's ratio can be designed by adjusting the arc angle. The analytical expressions of the equivalent Poisson's ratio and the equivalent elastic modulus are obtained by using the energy method, and the results are in good agreement with the finite element results. Based on the proposed new cellular structure, the impact deformation failure behavior and the energy absorption per unit mass of positive Poisson's ratio structure, zero Poisson's ratio structure and negative Poisson's ratio structure under low-speed and high-speed impact are discussed by numerical method. It is found that under low-speed impact, the local deformations of the three Poisson's ratio (positive/zero/negative) structures are different. During high-speed impact, the inertia effect makes the local deformation concentrated at the impact end, and the cell deformation modes of the three Poisson's ratio (positive/zero/negative) structures are different. The negative Poisson's ratio structure shows excellent energy absorption regardless of low-speed or high- speed impact. With the increase of wall thickness, the energy absorption effect of the structure is significantly enhanced.
  • [1]
    任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656 − 689. doi: 10.6052/0459-1879-18-381

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656 − 689. (in Chinese) doi: 10.6052/0459-1879-18-381
    [2]
    EVANS K E, NKANSAH M A, HUTCHINSON I J, et al. Molecular network design [J]. Nature, 1991, 353(6340): 353124. doi: 10.1038/353124a0
    [3]
    REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: A review [J]. Smart Materials & Structures, 2018, 27(2): 023001.
    [4]
    吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计, 抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611 − 638. doi: 10.6052/0459-1879-20-333

    WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611 − 638. (in Chinese) doi: 10.6052/0459-1879-20-333
    [5]
    ALDERSON A. A triumph of lateral thought [J]. Chemistry & Industry, 1999, 318(10): 384 − 391.
    [6]
    ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio [J]. Journal of Sandwich Structures & Materials, 2015, 17(1): 26 − 55.
    [7]
    于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1 − 14. doi: 10.3901/JME.2018.13.001

    YU Jingjun, XIE Yan, PEI Xu. State-of-art of metamaterials with negative Poisson’s ratio [J]. Journal of Mechanical Engineering, 2018, 54(13): 1 − 14. (in Chinese) doi: 10.3901/JME.2018.13.001
    [8]
    CHOI J B, LAKES R S. Non-linear properties of metallic cellular materials with a negative Poisson's ratio [J]. Journal of Materials Science, 1992, 27(19): 5375 − 5381. doi: 10.1007/BF02403846
    [9]
    GIBSON L J, ASHBY M F. The mechanics of two-dimensional cellular materials [J]. Proceedings of the Royal Society of London, 1982, 382(1782): 43 − 59.
    [10]
    LAKES R S. Advances in negative Poisson's ratio materials [J]. Advanced Materials, 1993, 5(4): 293 − 296. doi: 10.1002/adma.19930050416
    [11]
    ZHANG P W, WANG Z H, ZHAO L M. Dynamic crushing behavior of open-cell aluminum foam with negative Poisson’s ratio [J]. Applied Physics A-Materials Science & Processing, 2017, 123(5): 1 − 11.
    [12]
    WANG T, AN J, HE H, et al. A novel 3D impact energy absorption structure with negative Poisson's ratio and its application in aircraft crashworthiness [J]. Composite Structures, 2021, 262: 113663. doi: 10.1016/j.compstruct.2021.113663
    [13]
    HU L L, LUO Z R, YIN Q Y. Negative Poisson's ratio effect of reentrant antitrichiral honeycombs under large deformation [J]. Thin-Walled Structures, 2019, 141: 283 − 292. doi: 10.1016/j.tws.2019.04.032
    [14]
    姚永永, 苏步云, 肖革胜, 等. 内凹负泊松比蜂窝结构的面内双轴冲击响应[J]. 高压物理学报, 2021, 35(2): 72 − 79.

    YAO Yongyong, SU Buyun, XIAO Gesheng, et al. In-plane biaxial impact response of re-entrant auxetic honeycomb [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 72 − 79. (in Chinese)
    [15]
    任毅如, 蒋宏勇, 金其多, 等. 仿生负泊松比拉胀内凹蜂窝结构耐撞性[J]. 航空学报, 2021, 42(3): 1 − 11.

    REN Yiru, JIANG Hongyong, JIN Qiduo, et al. Crashworthiness of bio-inspired auxetic reentrant honeycomb with negative Poisson's ratio [J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42(3): 1 − 11. (in Chinese)
    [16]
    NEDOUSHAN R J, AN Y, YU W R, et al. Novel triangular auxetic honeycombs with enhanced stiffness [J]. Composite Structures, 2021, 277(1): 114605.
    [17]
    DUAN S, XI L, WEN W, et al. A novel design method for 3D positive and negative Poisson's ratio material based on tension-twist coupling effects [J]. Composite Structures, 2020, 236: 111899. doi: 10.1016/j.compstruct.2020.111899
    [18]
    张权, 高松林, 杜志鹏, 等. 星形梯度负泊松比蜂窝结构面内冲击动态响应[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5): 886 − 891.

    ZHANG Quan, GAO Songlin, DU Zhipeng, et al. In-plane impact dynamic response of Star-shaped gradient negative Poisson’s ratio honeycomb structures [J]. Journal of Wuhan University of Technology (Transportation Science&Engineering), 2020, 44(5): 886 − 891. (in Chinese)
    [19]
    王梁, 刘海涛. X型内凹蜂窝结构的拉伸力学行为研究[J]. 机械强度, 2020, 42(4): 896 − 900.

    WANG Liang, LIU Haitao. Study on tensile mechanical behavior of X-type re-entrant honeycomb structure [J]. Journal of Mechanical Strength, 2020, 42(4): 896 − 900. (in Chinese)
    [20]
    ZHOU G, ZHAO W Z, MA Z D, et al. Multi-objective reliability design optimization of a novel side door negative Poisson's ratio impact beam [J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2018, 232(9): 1196 − 1205. doi: 10.1177/0954407017728159
    [21]
    夏利福, 杨德庆. 含负泊松比超材料肋板的双层圆柱壳声振性能分析[J]. 振动与冲击, 2018, 37(18): 138 − 144.

    XIA Lifu, YANG Deqing. Acoustics and vibration analysis of a double cylindrical shell with lightweight auxetic metamaterial ribs [J]. Journal of Vibration and Shock, 2018, 37(18): 138 − 144. (in Chinese)
    [22]
    TAN H L, HE Z C, LI K X, et al. In-plane crashworthiness of re-entrant hierarchical honeycombs with negative Poisson’s ratio [J]. Composite Structures, 2019, 229: 111415. doi: 10.1016/j.compstruct.2019.111415
    [23]
    SHAO Y J, MENG J X, MA G H, et al. Insight into the negative Poisson's ratio effect of the gradient auxetic reentrant honeycombs [J]. Composite Structures, 2021, 274: 114366. doi: 10.1016/j.compstruct.2021.114366
    [24]
    FRANZISKA W, CAROLIN K. Phononic band gaps in 2D quadratic and 3D cubic cellular structures [J]. Materials, 2015, 8(12): 8327 − 8337. doi: 10.3390/ma8125463
    [25]
    蒋伟, 马华, 王军, 等. 基于环形蜂窝芯结构的负泊松比机械超材料[J]. 科学通报, 2016(13): 1421 − 1427.

    JIANG Wei, MA Hua, WANG Jun, et al. Mechanical metamaterial with negative Poisson’s ratio based on circular honeycomb core [J]. Chinese Science Bulletin, 2016(13): 1421 − 1427. (in Chinese)
    [26]
    沈建邦, 肖俊华. 负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J]. 中国机械工程, 2019, 30(17): 2134 − 2141.

    SHEN Jianbang, XIAO Junhua. Mechanics properties of negative Poisson’s ratio honeycomb structures with variable arc angle curved concave sides [J]. China Mechanical Engineering, 2019, 30(17): 2134 − 2141. (in Chinese)
    [27]
    SHEN J B, GE J R, XIAO J H, et al. In-plane impact dynamics of honeycomb structure containing curved reentrant sides with negative Poisson’s ratio effect [J]. Mechanics of Advanced Materials and Structures, 2022, 29(10): 1489 − 1497.
    [28]
    尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能[J]. 复合材料学报, 2022, 39(7): 3570 − 3580. doi: 10.13801/j.cnki.fhclxb.20210729.003

    YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of concave honeycomb structure with negative Poisson's ratio [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3570 − 3580. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20210729.003
    [29]
    虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13): 51 − 59.

    YU Kejiong, XU Fengxiang, HUA Lin. In plane impact performance of honeycomb structure with sinusoidal curved edge and negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2021, 40(13): 51 − 59. (in Chinese)
    [30]
    尤泽华, 肖俊华. 弧边内凹蜂窝负泊松比结构的面内冲击动力学数值研究[J]. 工程力学, 2022, 39(12): 248 − 256. doi: 10.6052/j.issn.1000-4750.2021.07.0572

    YOU Zehua, XIAO Junhua. Numerical study on in-plane impact dynamics of concave honeycomb structure with negative Poisson's ratio [J]. Engineering Mechanics, 2022, 39(12): 248 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0572
    [31]
    邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13): 103 − 109, 154.

    DENG Xiaolin, LIU Wangyu. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103 − 109, 154. (in Chinese)
    [32]
    胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能[J]. 振动与冲击, 2011, 30(5): 226 − 229. doi: 10.3969/j.issn.1000-3835.2011.05.047

    HU Lingling, CHEN Yili. Mechanical properties of triangular honeycombs under in-plane impact loading [J]. Journal of Vibration and Shock, 2011, 30(5): 226 − 229. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.05.047
    [33]
    GIBSON L J, ASHBY M F. Cellular solids: Structure and properties [M]. Cambridge: Cambridge University Press, 1997.
    [34]
    朱翔, 尹曜, 王蕊, 等. 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究[J]. 工程力学, 2021, 38(5): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0428

    ZHU Xiang, YIN Yao, WANG Rui, et al. Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics, 2021, 38(5): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0428
    [35]
    文桂林, 孔祥正, 尹汉锋, 等. 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115 − 121.

    WEN Guilin, KONG Xiangzheng, YIN Hanfeng, et al. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures [J]. Journal of Vibration and Shock, 2015, 34(5): 115 − 121. (in Chinese)
    [36]
    沈建邦, 肖俊华, 梁希, 等. 负泊松比曲边内凹蜂窝结构的面内冲击动力学数值研究[J]. 中国机械工程, 2020, 31(16): 1998 − 2004.

    SHEN Jianbang, XIAO Junhua, LIANG Xi, et al. Numerical study on in-plane impact dynamics of negative Poisson's ratio honeycomb structures with curved concave sides [J]. China Mechanical Engineering, 2020, 31(16): 1998 − 2004. (in Chinese)
  • Related Articles

    [1]WANG Kai-xing, WU Jia-cheng, PAN Yi-shan, DOU Lin-ming. ANALYSIS OF SHOCK ABSORPTION AND ANTI-IMPACT EFFECT OF ENERGY-ABSORBING SUPPORT IN ROADWAY[J]. Engineering Mechanics, 2023, 40(6): 204-212. DOI: 10.6052/j.issn.1000-4750.2022.02.0181
    [2]TAN Ping, LIU Liang-kun, CHEN Yang-yang, ZHOU Fu-lin, YAN Wei-ming. BIFURCATION ANALYSIS OF NONLINEAR ENERGY SINK ABSORPTION SYSTEM UNDER GROUND HARMONIC EXCITATION[J]. Engineering Mechanics, 2017, 34(12): 67-74. DOI: 10.6052/j.issn.1000-4750.2016.07.0518
    [3]ZHANG Jian, ZHAO Gui-ping, LU Tian-jian. ENERGY ABSORPTION BEHAVIOUR OF DENSITY-GRADED METALLIC FOAM UNDER IMPACT LOADING[J]. Engineering Mechanics, 2016, 33(8): 211-220. DOI: 10.6052/j.issn.1000-4750.2014.09.0755
    [4]TAN Zhu-hua, CHEN Chen, HAN Xu, WANG Fu-rui. INVESTIGATION ON THE DYNAMIC COMPRESSIVE BEHAVIOR AND ENERGY ABSORPTION PROPERTIES OF ALUMINIUM-SILICON FOAM[J]. Engineering Mechanics, 2013, 30(2): 360-364. DOI: 10.6052/j.issn.1000-4750.2011.07.0468
    [5]SONG Yan-qi, LU Yan-wei. INCREMENTAL RATE OF ENERGY RELEASE RATE BASED ON FINITE DEFORMATION THEORY[J]. Engineering Mechanics, 2011, 28(5): 49-053.
    [6]LONG Shu-yao, CHEN Xian-yan, LI Qing. OPTIMIZATION FOR ENERGY ABSORPTION AND INITIAL PEAK FORCE OF TAPERED THIN-WALLED TUBES WITH RECTANGULAR CROSS-SECTION[J]. Engineering Mechanics, 2007, 24(11): 70-075.
    [7]YANG Sheng-qi, XU Wei-ya, SU Cheng-dong. STUDY ON THE DEFORMATION FAILURE AND ENERGY PROPERTIES OF MARBLE SPECIMEN UNDER TRIAXIAL COMPRESSION[J]. Engineering Mechanics, 2007, 24(1): 136-142.
    [8]XIA Chang-jing, XIE He-ping, JU Yang, ZHOU Hong-wei. EXPERIMENTAL STUDY OF ENERGY DISSIPATION OF POROUS ROCK UNDER IMPACT LOADING[J]. Engineering Mechanics, 2006, 23(9): 1-5.
    [9]JIANG Zhi-gang, ZENG Shou-yi, ZHOU Jian-ping. ANALYSES OF CRITICAL IMPACT ENERGY FOR PLUGGING FAILURE OF THIN METALLIC PLATES[J]. Engineering Mechanics, 2004, 21(5): 203-208.
    [10]WANG Xi, LU Guo-xing, YU Tong-xi. ENERGY ABSORPOTION BEHAVIOR OF COMPOSITE TUBE STRUCTURES[J]. Engineering Mechanics, 2003, 20(3): 155-160.
  • Cited by

    Periodical cited type(3)

    1. 肖俊华,万武举,郭之熙,梁希. 梯度双材料负泊松比蜂窝夹芯板局部冲击失效研究. 复合材料学报. 2025(03): 1689-1699 .
    2. 赵畅,周丽,邱涛. 柔性铰可变形蜂窝结构的面内拉伸性能. 复合材料学报. 2024(12): 6802-6810 .
    3. 张美玲,付琪翔. 一种具有张拉特性的二维负泊松比超材料的结构设计. 长春工业大学学报. 2023(05): 385-389+481 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (473) PDF downloads (118) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return