Citation: | WANG Xin-xin, YU Jian-gong, ZHANG Bo, LIU Can-can, WANG Xian-hui. INVESTIGATION ON LAMB WAVE CHARACTERISTICS IN ONE-DIMENSIONAL HEXAGONAL QUASI-CRYSTAL NANO PLATES[J]. Engineering Mechanics, 2023, 40(10): 213-221. DOI: 10.6052/j.issn.1000-4750.2022.01.0089 |
[1] |
SHECHTMAN D G, BLECH I A, GRATIAS D, et al. Metalic phase with long-range orientational order and no translational symmetry [J]. Physical Review Letters, 1984, 53(20): 1951 − 1953. doi: 10.1103/PhysRevLett.53.1951
|
[2] |
LEVINE D, STEINHARDT P J. Quasicrystals: A new class of ordered structures [J]. Physical Review Letters, 1984, 53(26): 2477 − 2480. doi: 10.1103/PhysRevLett.53.2477
|
[3] |
LEE K, CHEN E, NAUGLE D, et al. Corrosive behavior of multi-phased quasicrystal alloys [J]. Journal of Alloys and Compounds, 2020, 851: 156862.
|
[4] |
YADAV T P, MUKHOPADHYAY N K. Quasicrystal: A low-frictional novel material [J]. Current Opinion in Chemical Engineering, 2018, 19: 163 − 169. doi: 10.1016/j.coche.2018.03.005
|
[5] |
WANG Z, RICOEUR A. Numerical crack path prediction under mixed-mode loading in 1D quasicrystals [J]. Theoretical and Applied Fracture Mechanics, 2017, 90: 122 − 132. doi: 10.1016/j.tafmec.2017.03.013
|
[6] |
李联和, 刘官厅. 位错和均匀分布载荷作用下的二维十次对称准晶的弹性分析[J]. 工程力学, 2013, 30(11): 61 − 66.
LI Lianhe, LIU Guanting. Elastic analysis of the decagonal quasicrystal subjected to line force and dislocation [J]. Engineering Mechanics, 2013, 30(11): 61 − 66. (in Chinese)
|
[7] |
SAIDA J, ITOH K, SANADA T, et al. Atomic structure of nanoscale quasicrystal-forming Zr-noble metal binary metallic glasses [J]. Journal of Alloys and Compounds, 2011, 509: S27 − S33. doi: 10.1016/j.jallcom.2010.12.076
|
[8] |
HUANG H, TIAN Y, YUAN G, et al. Formation mechanism of quasicrystals at the nanoscale during hot compression of Mg alloys [J]. Scripta Materialia, 2014, 78/79: 61 − 64. doi: 10.1016/j.scriptamat.2014.01.035
|
[9] |
INOUE A, KONG F, ZHU S, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Materials Research, 2015, 18(6): 1414 − 1425. doi: 10.1590/1516-1439.058815
|
[10] |
YANG L, LI Y, GAO Y, et al. Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates [J]. Applied Mathematical Modelling, 2018, 63: 203 − 218. doi: 10.1016/j.apm.2018.06.050
|
[11] |
聂志峰, 周慎杰, 韩汝军, 等. 应变梯度弹性理论下微构件尺寸效应的数值研究[J]. 工程力学, 2012, 29(6): 38 − 46. doi: 10.6052/j.issn.1000-4750.2010.08.0624
NIE Zhifeng, ZHOU Shenjie, HAN Rujun, et al. Numerical study on size effects of the microstructures based on strain gradient elasticity [J]. Engineering Mechanics, 2012, 29(6): 38 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0624
|
[12] |
YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures, 2002, 39(10): 2731 − 2743. doi: 10.1016/S0020-7683(02)00152-X
|
[13] |
ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [J]. Journal of Applied Physics, 1983, 54(9): 4703 − 4710. doi: 10.1063/1.332803
|
[14] |
MINDLIN R D. Second gradient of strain and surface-tension in linear elasticity [J]. International Journal of Solids and Structures, 1965, 1(4): 417 − 438. doi: 10.1016/0020-7683(65)90006-5
|
[15] |
GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291 − 323. doi: 10.1007/BF00261375
|
[16] |
LI Y S, XIAO T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory [J]. Applied Mathematical Modelling, 2021, 96: 733 − 750. doi: 10.1016/j.apm.2021.03.028
|
[17] |
HUANG Y, CHEN J, ZHAO M, et al. Responses of multilayered two-dimensional decagonal quasicrystal circular nanoplates with initial stresses and nanoscale interactions [J]. European Journal of Mechanics-A/Solids, 2021, 87: 104216.
|
[18] |
LI Y, YANG L, ZHANG L, et al. Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects [J]. Applied Mathematical Modelling, 2020, 87: 42 − 54. doi: 10.1016/j.apm.2020.05.001
|
[19] |
ZHAO Z, GUO J. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals [J]. Applied Mathematics and Mechanics, 2021, 42(5): 625 − 640. doi: 10.1007/s10483-021-2721-5
|
[20] |
ZHANG M, GUO J, LI Y. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modified couple-stress theory [J]. Applied Mathematics and Mechanics, 2022, 43(3): 371 − 388. doi: 10.1007/s10483-022-2818-6
|
[21] |
WAKSMANSKI N, PAN E, YANG L Z, et al. Free vibration of a multilayered one-dimensional quasi-crystal plate [J]. Journal of Vibration and Acoustics, 2014, 136(4): 041019. doi: 10.1115/1.4027632
|
[22] |
LI Y, YANG L, ZHANG L, et al. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates [J]. Mechanics of Advanced Materials and Structures, 2021, 28(12): 1216 − 1226. doi: 10.1080/15376494.2019.1655687
|
[23] |
HUANG Y, FENG M, CHEN X. Pull-in instability and vibration of quasicrystal circular nanoplate actuator based on surface effect and nonlocal elastic theory [J]. Archive of Applied Mechanics, 2022, 92(3): 853 − 866. doi: 10.1007/s00419-021-02077-y
|
[24] |
宋国荣, 刘明坤, 吕炎, 等. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218 − 226. doi: 10.6052/j.issn.1000-4750.2016.11.0841
SONG Guorong, LIU Mingkun, LYU Yan, et al. Longitudinal guided waves in orthotropic hollow cylinders [J]. Engineering Mechanics, 2018, 35(3): 218 − 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0841
|
[25] |
刘宏业, 刘申, 吕炎, 等. 纤维增强复合板中声弹Lamb波的波结构分析[J]. 工程力学, 2020, 37(8): 221 − 229. doi: 10.6052/j.issn.1000-4750.2019.09.0565
LIU Hongye, LIU Shen, LYU Yan, et al. Wave structure analysis of acoustoelastic Lamb waves in fiber reinforced composite lamina [J]. Engineering Mechanics, 2020, 37(8): 221 − 229. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0565
|
[26] |
DING D, YANG W, HU C, et al. Generalized elasticity theory of quasicrystals [J]. Physical Review B, 1993, 48(10): 7003 − 7010. doi: 10.1103/PhysRevB.48.7003
|
[27] |
LEFEBVRE J E, YU J G, RATOLOJANAHARY F E, et al. Mapped orthogonal functions method applied to acoustic waves-based devices [J]. AIP Advances, 2016, 6(6): 065307. doi: 10.1063/1.4953847
|
[28] |
ZHANG B, YU J G, ZHANG X M, et al. Guided waves in the multilayered one-dimensional hexagonal quasi-crystal plates [J]. Acta Mechanica Solida Sinica, 2021, 34: 91 − 103. doi: 10.1007/s10338-020-00178-9
|
[29] |
GHODRATI B, YAGHOOTIAN A, GHANBAR ZADEH A, et al. Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories [J]. Waves in Random and Complex Media, 2018, 28(1): 15 − 34. doi: 10.1080/17455030.2017.1308582
|
[30] |
LI Y S, PAN E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory [J]. International Journal of Engineering Science, 2015, 97: 40 − 59. doi: 10.1016/j.ijengsci.2015.08.009
|
1. |
马园园,周跃亭,赵雪芬,卢绍楠,丁生虎. Love波冲击下一维六方压电准晶涂层与基底间界面裂纹分析. 宁夏大学学报(自然科学版中英文). 2025(01): 16-23 .
![]() |