WANG Xin-xin, YU Jian-gong, ZHANG Bo, LIU Can-can, WANG Xian-hui. INVESTIGATION ON LAMB WAVE CHARACTERISTICS IN ONE-DIMENSIONAL HEXAGONAL QUASI-CRYSTAL NANO PLATES[J]. Engineering Mechanics, 2023, 40(10): 213-221. DOI: 10.6052/j.issn.1000-4750.2022.01.0089
Citation: WANG Xin-xin, YU Jian-gong, ZHANG Bo, LIU Can-can, WANG Xian-hui. INVESTIGATION ON LAMB WAVE CHARACTERISTICS IN ONE-DIMENSIONAL HEXAGONAL QUASI-CRYSTAL NANO PLATES[J]. Engineering Mechanics, 2023, 40(10): 213-221. DOI: 10.6052/j.issn.1000-4750.2022.01.0089

INVESTIGATION ON LAMB WAVE CHARACTERISTICS IN ONE-DIMENSIONAL HEXAGONAL QUASI-CRYSTAL NANO PLATES

More Information
  • Received Date: January 17, 2022
  • Revised Date: June 06, 2022
  • Available Online: June 16, 2022
  • Quasi-crystal nano structures are often subjected to dynamic loads represented by elastic waves in engineering. In order to study their dynamic failure mechanism, Lamb waves in one-dimensional hexagonal quasi-crystal nano plates are investigated. Based on the Bak model, dynamic equations of Lamb waves are derived in the context of the modified couple stress theory. The Legendre orthogonal polynomial method is employed to solve the dynamic equations, and dispersion curves and displacement distributions are calculated. The size effect in phonon and phason fields, and the phonon-phason coupling effect on the wave characteristics are studied. The results show that the size effect increases the phase velocities of phonon modes and phason modes; the phonon-phason coupling effect significantly increases the amplitudes of phason displacements in the phonon modes and the amplitudes of phonon displacements in the phason modes. The results lay a theoretical foundation for the design and nondestructive testing of quasi-crystal nano structures.
  • [1]
    SHECHTMAN D G, BLECH I A, GRATIAS D, et al. Metalic phase with long-range orientational order and no translational symmetry [J]. Physical Review Letters, 1984, 53(20): 1951 − 1953. doi: 10.1103/PhysRevLett.53.1951
    [2]
    LEVINE D, STEINHARDT P J. Quasicrystals: A new class of ordered structures [J]. Physical Review Letters, 1984, 53(26): 2477 − 2480. doi: 10.1103/PhysRevLett.53.2477
    [3]
    LEE K, CHEN E, NAUGLE D, et al. Corrosive behavior of multi-phased quasicrystal alloys [J]. Journal of Alloys and Compounds, 2020, 851: 156862.
    [4]
    YADAV T P, MUKHOPADHYAY N K. Quasicrystal: A low-frictional novel material [J]. Current Opinion in Chemical Engineering, 2018, 19: 163 − 169. doi: 10.1016/j.coche.2018.03.005
    [5]
    WANG Z, RICOEUR A. Numerical crack path prediction under mixed-mode loading in 1D quasicrystals [J]. Theoretical and Applied Fracture Mechanics, 2017, 90: 122 − 132. doi: 10.1016/j.tafmec.2017.03.013
    [6]
    李联和, 刘官厅. 位错和均匀分布载荷作用下的二维十次对称准晶的弹性分析[J]. 工程力学, 2013, 30(11): 61 − 66.

    LI Lianhe, LIU Guanting. Elastic analysis of the decagonal quasicrystal subjected to line force and dislocation [J]. Engineering Mechanics, 2013, 30(11): 61 − 66. (in Chinese)
    [7]
    SAIDA J, ITOH K, SANADA T, et al. Atomic structure of nanoscale quasicrystal-forming Zr-noble metal binary metallic glasses [J]. Journal of Alloys and Compounds, 2011, 509: S27 − S33. doi: 10.1016/j.jallcom.2010.12.076
    [8]
    HUANG H, TIAN Y, YUAN G, et al. Formation mechanism of quasicrystals at the nanoscale during hot compression of Mg alloys [J]. Scripta Materialia, 2014, 78/79: 61 − 64. doi: 10.1016/j.scriptamat.2014.01.035
    [9]
    INOUE A, KONG F, ZHU S, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Materials Research, 2015, 18(6): 1414 − 1425. doi: 10.1590/1516-1439.058815
    [10]
    YANG L, LI Y, GAO Y, et al. Three-dimensional exact thermo-elastic analysis of multilayered two-dimensional quasicrystal nanoplates [J]. Applied Mathematical Modelling, 2018, 63: 203 − 218. doi: 10.1016/j.apm.2018.06.050
    [11]
    聂志峰, 周慎杰, 韩汝军, 等. 应变梯度弹性理论下微构件尺寸效应的数值研究[J]. 工程力学, 2012, 29(6): 38 − 46. doi: 10.6052/j.issn.1000-4750.2010.08.0624

    NIE Zhifeng, ZHOU Shenjie, HAN Rujun, et al. Numerical study on size effects of the microstructures based on strain gradient elasticity [J]. Engineering Mechanics, 2012, 29(6): 38 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2010.08.0624
    [12]
    YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity [J]. International Journal of Solids and Structures, 2002, 39(10): 2731 − 2743. doi: 10.1016/S0020-7683(02)00152-X
    [13]
    ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [J]. Journal of Applied Physics, 1983, 54(9): 4703 − 4710. doi: 10.1063/1.332803
    [14]
    MINDLIN R D. Second gradient of strain and surface-tension in linear elasticity [J]. International Journal of Solids and Structures, 1965, 1(4): 417 − 438. doi: 10.1016/0020-7683(65)90006-5
    [15]
    GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291 − 323. doi: 10.1007/BF00261375
    [16]
    LI Y S, XIAO T. Free vibration of the one-dimensional piezoelectric quasicrystal microbeams based on modified couple stress theory [J]. Applied Mathematical Modelling, 2021, 96: 733 − 750. doi: 10.1016/j.apm.2021.03.028
    [17]
    HUANG Y, CHEN J, ZHAO M, et al. Responses of multilayered two-dimensional decagonal quasicrystal circular nanoplates with initial stresses and nanoscale interactions [J]. European Journal of Mechanics-A/Solids, 2021, 87: 104216.
    [18]
    LI Y, YANG L, ZHANG L, et al. Three-dimensional exact solution of layered two-dimensional quasicrystal simply supported nanoplates with size-dependent effects [J]. Applied Mathematical Modelling, 2020, 87: 42 − 54. doi: 10.1016/j.apm.2020.05.001
    [19]
    ZHAO Z, GUO J. Surface effects on a mode-III reinforced nano-elliptical hole embedded in one-dimensional hexagonal piezoelectric quasicrystals [J]. Applied Mathematics and Mechanics, 2021, 42(5): 625 − 640. doi: 10.1007/s10483-021-2721-5
    [20]
    ZHANG M, GUO J, LI Y. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via modified couple-stress theory [J]. Applied Mathematics and Mechanics, 2022, 43(3): 371 − 388. doi: 10.1007/s10483-022-2818-6
    [21]
    WAKSMANSKI N, PAN E, YANG L Z, et al. Free vibration of a multilayered one-dimensional quasi-crystal plate [J]. Journal of Vibration and Acoustics, 2014, 136(4): 041019. doi: 10.1115/1.4027632
    [22]
    LI Y, YANG L, ZHANG L, et al. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates [J]. Mechanics of Advanced Materials and Structures, 2021, 28(12): 1216 − 1226. doi: 10.1080/15376494.2019.1655687
    [23]
    HUANG Y, FENG M, CHEN X. Pull-in instability and vibration of quasicrystal circular nanoplate actuator based on surface effect and nonlocal elastic theory [J]. Archive of Applied Mechanics, 2022, 92(3): 853 − 866. doi: 10.1007/s00419-021-02077-y
    [24]
    宋国荣, 刘明坤, 吕炎, 等. 正交各向异性空心圆柱体中的纵向导波[J]. 工程力学, 2018, 35(3): 218 − 226. doi: 10.6052/j.issn.1000-4750.2016.11.0841

    SONG Guorong, LIU Mingkun, LYU Yan, et al. Longitudinal guided waves in orthotropic hollow cylinders [J]. Engineering Mechanics, 2018, 35(3): 218 − 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0841
    [25]
    刘宏业, 刘申, 吕炎, 等. 纤维增强复合板中声弹Lamb波的波结构分析[J]. 工程力学, 2020, 37(8): 221 − 229. doi: 10.6052/j.issn.1000-4750.2019.09.0565

    LIU Hongye, LIU Shen, LYU Yan, et al. Wave structure analysis of acoustoelastic Lamb waves in fiber reinforced composite lamina [J]. Engineering Mechanics, 2020, 37(8): 221 − 229. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0565
    [26]
    DING D, YANG W, HU C, et al. Generalized elasticity theory of quasicrystals [J]. Physical Review B, 1993, 48(10): 7003 − 7010. doi: 10.1103/PhysRevB.48.7003
    [27]
    LEFEBVRE J E, YU J G, RATOLOJANAHARY F E, et al. Mapped orthogonal functions method applied to acoustic waves-based devices [J]. AIP Advances, 2016, 6(6): 065307. doi: 10.1063/1.4953847
    [28]
    ZHANG B, YU J G, ZHANG X M, et al. Guided waves in the multilayered one-dimensional hexagonal quasi-crystal plates [J]. Acta Mechanica Solida Sinica, 2021, 34: 91 − 103. doi: 10.1007/s10338-020-00178-9
    [29]
    GHODRATI B, YAGHOOTIAN A, GHANBAR ZADEH A, et al. Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories [J]. Waves in Random and Complex Media, 2018, 28(1): 15 − 34. doi: 10.1080/17455030.2017.1308582
    [30]
    LI Y S, PAN E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory [J]. International Journal of Engineering Science, 2015, 97: 40 − 59. doi: 10.1016/j.ijengsci.2015.08.009
  • Related Articles

    [1]ZHOU Yi, SUN Li-min, XIE Mo-wen. TEMPERATURE EFFECTS ON THE MID-SPAN VERTICAL DISPLACEMENT OF A CABLE-STAYED BRIDGE[J]. Engineering Mechanics, 2018, 35(8): 46-54. DOI: 10.6052/j.issn.1000-4750.2017.04.0272
    [2]TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. EFFECT OF SAMPLE SIZE ON IDENTIFICATION OF A JOINT PROBABILITY DISTRIBUTION UNDERLYING CORRELATED GEOTECHNICAL PARAMETERS[J]. Engineering Mechanics, 2015, 32(2): 1-11. DOI: 10.6052/j.issn.1000-4750.2013.08.0740
    [3]HU Xiao-bin, HE Hui-gao. STUDY ON EQUAL-STRENGTH RESIDUAL DISPLACEMENT RATIO SPECTRUM[J]. Engineering Mechanics, 2015, 32(1): 163-167. DOI: 10.6052/j.issn.1000-4750.2013.07.0704
    [4]LIU Zu-jun, GE Yao-jun, YANG Yong-xin. THE EFFECT OF THE PRESSURE DISTRIBUTION CHARACTERISTICS OF PLATA SURFACE ON THE FLUTTER DERIVATIVES AND VIBRATION FORM[J]. Engineering Mechanics, 2014, 31(3): 122-128. DOI: 10.6052/j.issn.1000-4750.2012.05.0345
    [5]LI Song-hui. ANALYTICAL APPROACH FOR DETERMINING TRUCK WEIGHT LIMITS WITH TRUNCATED DISTRIBUTIONS OF LIVE LOAD EFFECTS ON HIGHWAY BRIDGES[J]. Engineering Mechanics, 2014, 31(2): 117-124. DOI: 10.6052/j.issn.1000-4750.2012.09.0691
    [6]SHI Shan-shan, SUN Zhi, REN Ming-fa, CHEN Hao-ran. THE EFFECT OF NON-UNIFORM DISTRIBUTION OF GRID ON STABILITY OF ADVANCED GRID STIFFENED COMPOSITE CONICAL SHELL[J]. Engineering Mechanics, 2012, 29(4): 43-48.
    [7]ZHANG Yong-li, LI Jie. STUDY ON TWO-DIMENSIONAL SEABED SOIL DISPLACEMENT DISTRIBUTION UNDER WAVE ACTION[J]. Engineering Mechanics, 2010, 27(6): 72-076.
    [8]FU Bing, WANG Zhen-yu. VERTICAL SURFACE DISPLACEMENT OF AN ELASTIC HALF SPACE UNDER DYNAMIC LOADING OF STATIC RIGID DISTRIBUTION[J]. Engineering Mechanics, 2009, 26(11): 31-035.
    [9]WANG Xue-bin, LIU Jie, PAN Yi-shan. THREE-POINT BENDING MODEL CONSIDERING STRAIN GRADIENT EFFECTS ——PART II: DISPLACEMENT AND ROTATION OF LOCALIZED BAND[J]. Engineering Mechanics, 2005, 22(1): 63-68.
    [10]Xiao Wanshen, Zeng Qingyuan. DISPLACEMENT-METHOD FOR THICK PLATES[J]. Engineering Mechanics, 1997, 14(1): 44-55.
  • Cited by

    Periodical cited type(1)

    1. 马园园,周跃亭,赵雪芬,卢绍楠,丁生虎. Love波冲击下一维六方压电准晶涂层与基底间界面裂纹分析. 宁夏大学学报(自然科学版中英文). 2025(01): 16-23 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (347) PDF downloads (51) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return