Citation: | LIU Jue-ding, FAN Xiang-qian, YE Yu-xiao, GE Fei. FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD[J]. Engineering Mechanics, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081 |
[1] |
LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete [J]. Construction and Building Materials, 2016, 120: 293 − 308. doi: 10.1016/j.conbuildmat.2016.05.111
|
[2] |
PREM P R, VERMA M, AMBILY P S. Damage characterization of reinforced concrete beams under different failure modes using acoustic emission [J]. Structures, 2021, 30: 174 − 187. doi: 10.1016/j.istruc.2021.01.007
|
[3] |
PEREIRA S, MAGALHES F, GOMES J P, et al. Vibration-based damage detection of a concrete arch dam [J]. Engineering Structures, 2021, 235(4): 112032.
|
[4] |
王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259
WANG Wenda, CHEN Runting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259
|
[5] |
XU S L, MU F, WANG J, et al. Experimental study on the interfacial bonding behaviors between sprayed UHTCC and concrete substrate [J]. Construction and Building Materials, 2019, 195: 638 − 649. doi: 10.1016/j.conbuildmat.2018.11.102
|
[6] |
BAIRÁN J M , TOI N, ALBERT D. Reliability-based assessment of the partial factor for shear design of fibre reinforced concrete members without shear reinforcement [J]. Materials and Structures, 2021, 54(5): 1 − 16.
|
[7] |
薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3): 228 − 236. doi: 10.6052/j.issn.1000-4750.2012.11.0826
XUE Yadong, LIU Dejun, HUANG Hongwen, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side [J]. Engineering Mechanics, 2014, 31(3): 228 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.11.0826
|
[8] |
曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881
CAO Liang, ZHANG Haiyan, WU Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881
|
[9] |
王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2021, 38(10): 188 − 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732
WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732
|
[10] |
BAOLIN W, CHENG J, WU Y F. Effect of defects in externally bonded FRP reinforced concrete [J]. Construction and Building Materials, 2018, 172(7): 63 − 76.
|
[11] |
CARLONI C, SUBRAMANIAM K V. Investigation of sub-critical fatigue crack growth in FRP /concrete cohesive interface using digital image analysis [J]. Composites Part B: Engineering, 2013, 51(8): 35 − 43.
|
[12] |
YASHCHUK M, SMERDOV D. Reinforced concrete elements strengthened by pre-stressed fibre-reinforced polymer (FRP) [J]. Transportation Research Procedia, 2021, 54: 157 − 165. doi: 10.1016/j.trpro.2021.02.060
|
[13] |
SMITH S T, KIM S J. Deflection calculation of FRP-strengthened reinforced concrete flexural members [J]. Australian Journal of Structural Engineering, 2010, 11(2): 75 − 86. doi: 10.1080/13287982.2010.11465057
|
[14] |
OOI E T, NATARAJAN S, SONG C, et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes [J]. International Journal of Fracture, 2017, 203(1/2): 135 − 137.
|
[15] |
OOI E T, SONG C, TIN-LOI F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13 − 33.
|
[16] |
PHAN D N. A method for calculating cracking moment of FRP reinforced concrete beam [J]. Key Engineering Materials, 2021, 896: 141 − 147. doi: 10.4028/www.scientific.net/KEM.896.141
|
[17] |
CHEN X J, DAI M X, YANG Z. Analysis on fatigue failure modes of reinforced concrete beams strengthened with BFRP [J]. Applied Mechanics & Materials, 2015, 744/745/746: 1367 − 1370.
|
[18] |
陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002
LU Xinzheng, YE Lieping, TENG Jinguang, et al. Bond-slip model for FRP-to-concrete interface [J]. Journal of Building Structures, 2005(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002
|
[19] |
刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(增刊 1): 149 − 153. doi: 10.6052/j.issn.1000-4750.2018.05.S028
LIU Xiuxi, XU Rongqiao. Interfacial shear stress in FRP-strengthened RC beams [J]. Engineering Mechanics, 2019, 36(Suppl 1): 149 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S028
|
[20] |
BAKY H A, EBEAD U A, NEALE K W. Nonlinear micromechanics-based bond–slip model for FRP-concrete interfaces [J]. Engineering Structures, 2003, 25(6): 11 − 23.
|
[21] |
WANG C, LIU X, LIU W, et al. Effects of different interface forms on mechanical properties of steel self-compacting concrete composite beams [J]. Advances in Civil Engineering, 2020, 2020(2): 1 − 17.
|
[22] |
DAI J G, GAO W Y, TENG J G, et al. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2013, 17(2): 217 − 228. doi: 10.1061/(ASCE)CC.1943-5614.0000337
|
[23] |
徐世烺. 混凝土断裂力学 [M]. 北京: 科学出版社, 2011.
XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese)
|
[24] |
李庆斌. 混凝土断裂损伤力学 [M]. 北京: 科学出版社, 2017.
LI Qingbin. Fracture damage mechanics of concrete [M]. Beijing: Science Press, 2017. (in Chinese)
|
[25] |
CARRILLO J, MENDOZA J, ALCOCER S. Model for estimating the flexural performance of concrete reinforced with hooked end steel fibers using three-point bending tests [J]. Structural Concrete, 2021, 22(3): 1 − 18.
|
[26] |
LIANG N, DAI J, LIU X, et al. Experimental study on the fracture toughness of concrete reinforced with rnylti-size polypropylene fibres [J]. Magazine of Concrete Research, 2019, 71(9/10): 468 − 475.
|
[27] |
WANG J. Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam [J]. International Journal of Solids & Structures, 2006, 43(21): 6630 − 6648.
|
[28] |
FAKOOR M, NEMATZADEH M. A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures [J]. Construction and Building Materials, 2021, 278(12): 122340.
|
[29] |
BISCAIA H C, CHASTRE C, SILVA M. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(1): 210 − 223.
|
[30] |
易富民. CFRP加固带缝混凝土梁的断裂特性 [D]. 大连: 大连理工大学, 2010.
Yi Fumin. Fracture characteristics of jointed concrete beams strengthened with CFRP [D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
|
[31] |
KOSTIHA V, GIRGLE F, JANUS O, et al. GFRP reinforcement behaviour under multi-axial stress-experimental study [J]. Solid State Phenomena, 2020, 309: 80 − 86. doi: 10.4028/www.scientific.net/SSP.309.80
|
[32] |
HAN H, LU Z, ZHANG J Z. Solutions of beam-shaped-function for analysis of composite plates with embedded delaminations [J]. Archive of Applied Mechanics, 2012, 82(4): 573 − 589. doi: 10.1007/s00419-011-0573-5
|
[33] |
WANG J, QIAO P. Interface crack between two shear deformable elastic layers [J]. Journal of the Mechanics & Physics of Solids, 2004, 52(4): 891 − 905.
|
[34] |
范向前, 刘决丁. 不同FRP增强混凝土梁断裂性能试验研究[J]. 建筑材料学报, 2020, 23(5): 1093 − 1097, 1103. doi: 10.3969/j.issn.1007-9629.2020.05.014
FAN Xiangqian, LIU Jueding. Experimental study on fracture behavior of different kinds of FRP reinforced concrete beams [J]. Journal of Building Materials, 2020, 23(5): 1093 − 1097, 1103. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.014
|
[35] |
胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718
HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the double-K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718
|
[36] |
NAKAI Y, KIKUCHI S, ASAYAMA K, et al. Stress ratio effect on fatigue crack initiation mechanism of magnesium alloy AZ31 [J]. Materials Science Forum, 2021, 1016: 1003 − 1008. doi: 10.4028/www.scientific.net/MSF.1016.1003
|
[37] |
ALIHA M R M, MOUSAVI S S. Sub-sized short bend beam configuration for the study of mixed-mode fracture [J]. Engineering Fracture Mechanics, 2019, 225(23): 1 − 16.
|
[38] |
HU X, GUAN J F, WANG Y, et al. Comparison of boundary and size effect models based on new developments [J]. Engineering Fracture Mechanics, 2017, 175: 146 − 167. doi: 10.1016/j.engfracmech.2017.02.005
|
[39] |
FU J, HAERI H, YAVARI M D, et al. Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV [J]. Strength of Materials, 2022, 53(6): 938 − 949.
|
[40] |
ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis [J]. Engineering Fracture Mechanics, 2011, 78(10): 2115 − 2138. doi: 10.1016/j.engfracmech.2011.03.014
|
[1] | GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. DOI: 10.6052/j.issn.1000-4750.2019.03.0082 |
[2] | QIN Xi, XU Qian-jun. THE SHEAR STRENGTH AND MODE II FRACTURE TOUGHNESS OF LAYERED CONCRETE[J]. Engineering Mechanics, 2019, 36(9): 188-196. DOI: 10.6052/j.issn.1000-4750.2018.08.0468 |
[3] | GUAN Jun-feng, YAO Xian-hua, BAI Wei-feng, CHEN Ji-hao, FU Jin-Wei. DETERMINATION OF FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING SMALL SPECIMENS[J]. Engineering Mechanics, 2019, 36(1): 70-79,87. DOI: 10.6052/j.issn.1000-4750.2017.09.0705 |
[4] | RONG Hua, DONG Wei, WU Zhi-min, FAN Xing-lang. EXPERIMENTAL INVESTIGATION ON DOUBLE-K FRACTURE PARAMETERS FOR LARGE INITIAL CRACK-DEPTH RATIO IN CONCRETE[J]. Engineering Mechanics, 2012, 29(1): 162-167. |
[5] | ZHANG Xiu-fang, XU Shi-lang. FRACTURE TOUGHNESS OF CONCRETE DETERMINED USING WEIGHT FUNCTION APPROACH[J]. Engineering Mechanics, 2011, 28(4): 58-062,. |
[6] | ZHAO Yan-hua, YANG Shu-tong, HAN Fei. A MODEL FOR FRACTURE TOUGHNESS PREDICTION IN COMPACT TENSION SPECIMEN OF CONCRETE[J]. Engineering Mechanics, 2009, 26(12): 127-132. |
[7] | WANG Zhao-xi, SHI Hui-ji. EFFECT OF OUT-OF-PLANE CONSTRAINT ON DUCTILE FRACTURE TOUGHNESS[J]. Engineering Mechanics, 2007, 24(11): 19-024. |
[8] | LI Zhong-xian, LIU Yong-guang. A PRACTICAL ANALYTICAL METHOD TO SOLVE EQUIVALENT FRACTURE TOUGHNESS OF CONCRETE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2006, 23(11): 91-98. |
[9] | WU Zhi-min, WANG Jin-lai, XU Shi-lang, LIU Yi. THT EFFECTIVE FRACTURE TOUGHNESS OF CONCRETE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2000, 17(1): 99-104. |
[10] | Wu Zhimin, Zhao Guofan. NONLINEAR FRACTURE TOUGHNESS GIc OF CONCRETE AND ITS SIZE EFFECT[J]. Engineering Mechanics, 1995, 12(4): 9-16. |
1. |
马园园,周跃亭,赵雪芬,卢绍楠,丁生虎. Love波冲击下一维六方压电准晶涂层与基底间界面裂纹分析. 宁夏大学学报(自然科学版中英文). 2025(01): 16-23 .
![]() |