LIU Jue-ding, FAN Xiang-qian, YE Yu-xiao, GE Fei. FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD[J]. Engineering Mechanics, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081
Citation: LIU Jue-ding, FAN Xiang-qian, YE Yu-xiao, GE Fei. FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD[J]. Engineering Mechanics, 2023, 40(10): 129-140. DOI: 10.6052/j.issn.1000-4750.2022.01.0081

FRACTURE PROCESS ANALYSIS OF FRP REINFORCED CONCRETE BEAMS BEFORE INSTABILITY BASED ON ANALYTICAL METHOD

More Information
  • Received Date: January 16, 2022
  • Revised Date: May 15, 2022
  • Accepted Date: June 23, 2022
  • Available Online: June 23, 2022
  • To study the fracture process of FRP reinforced concrete beam before instability, a cohesive zone model for interfacial debonding due to mid-span crack was established based on the theory of concrete fracture mechanics and the bond-slip law of non-linear FRP-concrete interface. The formulas of interfacial shear stress, FRP tensile stress and fracture toughness before instability of FRP reinforced concrete beams were deduced by analytical method, providing an effective method for analyzing FRP-concrete interface debonding. Three-point bending experiments of FRP reinforced concrete beams with four different initial crack-depth ratios (0.2, 0.3, 0.4 and 0.5) under dynamic load were carried out. The experimental results show that, the crack initiation load and crack resistance load of FRP reinforced concrete beams decrease with the increase of initial crack-depth ratio. When the initial crack-depth ratio is 0.4, the crack initiation of specimens is the latest. The crack initiation toughness and the crack resistance toughness do not change with the change of the initial crack-depth ratio, which is consistent with the observations of other references and verifies the correctness of the analytical solution for fracture toughness.
  • [1]
    LI Q B, GUAN J F, WU Z M, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete [J]. Construction and Building Materials, 2016, 120: 293 − 308. doi: 10.1016/j.conbuildmat.2016.05.111
    [2]
    PREM P R, VERMA M, AMBILY P S. Damage characterization of reinforced concrete beams under different failure modes using acoustic emission [J]. Structures, 2021, 30: 174 − 187. doi: 10.1016/j.istruc.2021.01.007
    [3]
    PEREIRA S, MAGALHES F, GOMES J P, et al. Vibration-based damage detection of a concrete arch dam [J]. Engineering Structures, 2021, 235(4): 112032.
    [4]
    王文达, 陈润亭. 方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析[J]. 工程力学, 2021, 38(3): 73 − 85. doi: 10.6052/j.issn.1000-4750.2020.04.0259

    WANG Wenda, CHEN Runting. Analysis on the fire resistance of square concrete-filled steel tubular column to composite beam with outer ring plate connections after earthquake damage [J]. Engineering Mechanics, 2021, 38(3): 73 − 85. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0259
    [5]
    XU S L, MU F, WANG J, et al. Experimental study on the interfacial bonding behaviors between sprayed UHTCC and concrete substrate [J]. Construction and Building Materials, 2019, 195: 638 − 649. doi: 10.1016/j.conbuildmat.2018.11.102
    [6]
    BAIRÁN J M , TOI N, ALBERT D. Reliability-based assessment of the partial factor for shear design of fibre reinforced concrete members without shear reinforcement [J]. Materials and Structures, 2021, 54(5): 1 − 16.
    [7]
    薛亚东, 刘德军, 黄宏伟, 等. 纤维编织网增强混凝土侧面加固偏压短柱试验研究[J]. 工程力学, 2014, 31(3): 228 − 236. doi: 10.6052/j.issn.1000-4750.2012.11.0826

    XUE Yadong, LIU Dejun, HUANG Hongwen, et al. Experimental study on eccentric compression short columns strengthened by textile-reinforced concrete on side [J]. Engineering Mechanics, 2014, 31(3): 228 − 236. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.11.0826
    [8]
    曹亮, 张海燕, 吴波. 纤维编织网增强地聚物砂浆加固钢筋混凝土梁受剪性能研究[J]. 工程力学, 2019, 36(1): 207 − 215. doi: 10.6052/j.issn.1000-4750.2017.11.0881

    CAO Liang, ZHANG Haiyan, WU Bo. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar [J]. Engineering Mechanics, 2019, 36(1): 207 − 215. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.11.0881
    [9]
    王东锋, 邵永波, 欧佳灵. CFRP加固含腐蚀缺陷圆钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2021, 38(10): 188 − 199. doi: 10.6052/j.issn.1000-4750.2020.10.0732

    WANG Dongfeng, SHAO Yongbo, OU Jialing. Experimental study on axial compressive capacity of corroded concrete filled circular CFRP-steel tube stubs [J]. Engineering Mechanics, 2021, 38(10): 188 − 199. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0732
    [10]
    BAOLIN W, CHENG J, WU Y F. Effect of defects in externally bonded FRP reinforced concrete [J]. Construction and Building Materials, 2018, 172(7): 63 − 76.
    [11]
    CARLONI C, SUBRAMANIAM K V. Investigation of sub-critical fatigue crack growth in FRP /concrete cohesive interface using digital image analysis [J]. Composites Part B: Engineering, 2013, 51(8): 35 − 43.
    [12]
    YASHCHUK M, SMERDOV D. Reinforced concrete elements strengthened by pre-stressed fibre-reinforced polymer (FRP) [J]. Transportation Research Procedia, 2021, 54: 157 − 165. doi: 10.1016/j.trpro.2021.02.060
    [13]
    SMITH S T, KIM S J. Deflection calculation of FRP-strengthened reinforced concrete flexural members [J]. Australian Journal of Structural Engineering, 2010, 11(2): 75 − 86. doi: 10.1080/13287982.2010.11465057
    [14]
    OOI E T, NATARAJAN S, SONG C, et al. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon-quadtree meshes [J]. International Journal of Fracture, 2017, 203(1/2): 135 − 137.
    [15]
    OOI E T, SONG C, TIN-LOI F, et al. Automatic modelling of cohesive crack propagation in concrete using polygon scaled boundary finite elements [J]. Engineering Fracture Mechanics, 2012, 93: 13 − 33.
    [16]
    PHAN D N. A method for calculating cracking moment of FRP reinforced concrete beam [J]. Key Engineering Materials, 2021, 896: 141 − 147. doi: 10.4028/www.scientific.net/KEM.896.141
    [17]
    CHEN X J, DAI M X, YANG Z. Analysis on fatigue failure modes of reinforced concrete beams strengthened with BFRP [J]. Applied Mechanics & Materials, 2015, 744/745/746: 1367 − 1370.
    [18]
    陆新征, 叶列平, 滕锦光, 等. FRP-混凝土界面粘结滑移本构模型[J]. 建筑结构学报, 2005(4): 10 − 18. doi: 10.3321/j.issn:1000-6869.2005.04.002

    LU Xinzheng, YE Lieping, TENG Jinguang, et al. Bond-slip model for FRP-to-concrete interface [J]. Journal of Building Structures, 2005(4): 10 − 18. (in Chinese) doi: 10.3321/j.issn:1000-6869.2005.04.002
    [19]
    刘兴喜, 徐荣桥. FRP加固混凝土梁粘结层剪应力分析[J]. 工程力学, 2019, 36(增刊 1): 149 − 153. doi: 10.6052/j.issn.1000-4750.2018.05.S028

    LIU Xiuxi, XU Rongqiao. Interfacial shear stress in FRP-strengthened RC beams [J]. Engineering Mechanics, 2019, 36(Suppl 1): 149 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.S028
    [20]
    BAKY H A, EBEAD U A, NEALE K W. Nonlinear micromechanics-based bond–slip model for FRP-concrete interfaces [J]. Engineering Structures, 2003, 25(6): 11 − 23.
    [21]
    WANG C, LIU X, LIU W, et al. Effects of different interface forms on mechanical properties of steel self-compacting concrete composite beams [J]. Advances in Civil Engineering, 2020, 2020(2): 1 − 17.
    [22]
    DAI J G, GAO W Y, TENG J G, et al. Bond-slip model for FRP laminates externally bonded to concrete at elevated temperature [J]. Journal of Composites for Construction, 2013, 17(2): 217 − 228. doi: 10.1061/(ASCE)CC.1943-5614.0000337
    [23]
    徐世烺. 混凝土断裂力学 [M]. 北京: 科学出版社, 2011.

    XU Shilang. Fracture mechanics of concrete [M]. Beijing: Science Press, 2011. (in Chinese)
    [24]
    李庆斌. 混凝土断裂损伤力学 [M]. 北京: 科学出版社, 2017.

    LI Qingbin. Fracture damage mechanics of concrete [M]. Beijing: Science Press, 2017. (in Chinese)
    [25]
    CARRILLO J, MENDOZA J, ALCOCER S. Model for estimating the flexural performance of concrete reinforced with hooked end steel fibers using three-point bending tests [J]. Structural Concrete, 2021, 22(3): 1 − 18.
    [26]
    LIANG N, DAI J, LIU X, et al. Experimental study on the fracture toughness of concrete reinforced with rnylti-size polypropylene fibres [J]. Magazine of Concrete Research, 2019, 71(9/10): 468 − 475.
    [27]
    WANG J. Cohesive zone model of intermediate crack-induced debonding of FRP-plated concrete beam [J]. International Journal of Solids & Structures, 2006, 43(21): 6630 − 6648.
    [28]
    FAKOOR M, NEMATZADEH M. A new post-peak behavior assessment approach for effect of steel fibers on bond stress-slip relationship of concrete and steel bar after exposure to high temperatures [J]. Construction and Building Materials, 2021, 278(12): 122340.
    [29]
    BISCAIA H C, CHASTRE C, SILVA M. Nonlinear numerical analysis of the debonding failure process of FRP-to-concrete interfaces [J]. Composites Part B: Engineering, 2013, 50(1): 210 − 223.
    [30]
    易富民. CFRP加固带缝混凝土梁的断裂特性 [D]. 大连: 大连理工大学, 2010.

    Yi Fumin. Fracture characteristics of jointed concrete beams strengthened with CFRP [D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
    [31]
    KOSTIHA V, GIRGLE F, JANUS O, et al. GFRP reinforcement behaviour under multi-axial stress-experimental study [J]. Solid State Phenomena, 2020, 309: 80 − 86. doi: 10.4028/www.scientific.net/SSP.309.80
    [32]
    HAN H, LU Z, ZHANG J Z. Solutions of beam-shaped-function for analysis of composite plates with embedded delaminations [J]. Archive of Applied Mechanics, 2012, 82(4): 573 − 589. doi: 10.1007/s00419-011-0573-5
    [33]
    WANG J, QIAO P. Interface crack between two shear deformable elastic layers [J]. Journal of the Mechanics & Physics of Solids, 2004, 52(4): 891 − 905.
    [34]
    范向前, 刘决丁. 不同FRP增强混凝土梁断裂性能试验研究[J]. 建筑材料学报, 2020, 23(5): 1093 − 1097, 1103. doi: 10.3969/j.issn.1007-9629.2020.05.014

    FAN Xiangqian, LIU Jueding. Experimental study on fracture behavior of different kinds of FRP reinforced concrete beams [J]. Journal of Building Materials, 2020, 23(5): 1093 − 1097, 1103. (in Chinese) doi: 10.3969/j.issn.1007-9629.2020.05.014
    [35]
    胡少伟, 尹阳阳, 范冰, 等. 基于等效纯弯曲梁的混凝土双K断裂参数研究[J]. 工程力学, 2019, 36(12): 44 − 51. doi: 10.6052/j.issn.1000-4750.2018.12.0718

    HU Shaowei, YIN Yangyang, FAN Bing, et al. Study of the double-K fracture parameters of concrete based on equivalent pure bending beams [J]. Engineering Mechanics, 2019, 36(12): 44 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.12.0718
    [36]
    NAKAI Y, KIKUCHI S, ASAYAMA K, et al. Stress ratio effect on fatigue crack initiation mechanism of magnesium alloy AZ31 [J]. Materials Science Forum, 2021, 1016: 1003 − 1008. doi: 10.4028/www.scientific.net/MSF.1016.1003
    [37]
    ALIHA M R M, MOUSAVI S S. Sub-sized short bend beam configuration for the study of mixed-mode fracture [J]. Engineering Fracture Mechanics, 2019, 225(23): 1 − 16.
    [38]
    HU X, GUAN J F, WANG Y, et al. Comparison of boundary and size effect models based on new developments [J]. Engineering Fracture Mechanics, 2017, 175: 146 − 167. doi: 10.1016/j.engfracmech.2017.02.005
    [39]
    FU J, HAERI H, YAVARI M D, et al. Effects of the measured noise on the failure mechanism of pre-cracked concrete specimens under the loading modes I, II, III, and IV [J]. Strength of Materials, 2022, 53(6): 938 − 949.
    [40]
    ZHANG X F, XU S L. A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis [J]. Engineering Fracture Mechanics, 2011, 78(10): 2115 − 2138. doi: 10.1016/j.engfracmech.2011.03.014
  • Related Articles

    [1]GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng. DETERMINATION OF FRACTURE TOUGHNESS OF CONCRETE AND ROCK USING UNNOTCHED SPECIMENS[J]. Engineering Mechanics, 2020, 37(3): 36-45,107. DOI: 10.6052/j.issn.1000-4750.2019.03.0082
    [2]QIN Xi, XU Qian-jun. THE SHEAR STRENGTH AND MODE II FRACTURE TOUGHNESS OF LAYERED CONCRETE[J]. Engineering Mechanics, 2019, 36(9): 188-196. DOI: 10.6052/j.issn.1000-4750.2018.08.0468
    [3]GUAN Jun-feng, YAO Xian-hua, BAI Wei-feng, CHEN Ji-hao, FU Jin-Wei. DETERMINATION OF FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING SMALL SPECIMENS[J]. Engineering Mechanics, 2019, 36(1): 70-79,87. DOI: 10.6052/j.issn.1000-4750.2017.09.0705
    [4]RONG Hua, DONG Wei, WU Zhi-min, FAN Xing-lang. EXPERIMENTAL INVESTIGATION ON DOUBLE-K FRACTURE PARAMETERS FOR LARGE INITIAL CRACK-DEPTH RATIO IN CONCRETE[J]. Engineering Mechanics, 2012, 29(1): 162-167.
    [5]ZHANG Xiu-fang, XU Shi-lang. FRACTURE TOUGHNESS OF CONCRETE DETERMINED USING WEIGHT FUNCTION APPROACH[J]. Engineering Mechanics, 2011, 28(4): 58-062,.
    [6]ZHAO Yan-hua, YANG Shu-tong, HAN Fei. A MODEL FOR FRACTURE TOUGHNESS PREDICTION IN COMPACT TENSION SPECIMEN OF CONCRETE[J]. Engineering Mechanics, 2009, 26(12): 127-132.
    [7]WANG Zhao-xi, SHI Hui-ji. EFFECT OF OUT-OF-PLANE CONSTRAINT ON DUCTILE FRACTURE TOUGHNESS[J]. Engineering Mechanics, 2007, 24(11): 19-024.
    [8]LI Zhong-xian, LIU Yong-guang. A PRACTICAL ANALYTICAL METHOD TO SOLVE EQUIVALENT FRACTURE TOUGHNESS OF CONCRETE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2006, 23(11): 91-98.
    [9]WU Zhi-min, WANG Jin-lai, XU Shi-lang, LIU Yi. THT EFFECTIVE FRACTURE TOUGHNESS OF CONCRETE BASED ON FICTITIOUS CRACK MODEL[J]. Engineering Mechanics, 2000, 17(1): 99-104.
    [10]Wu Zhimin, Zhao Guofan. NONLINEAR FRACTURE TOUGHNESS GIc OF CONCRETE AND ITS SIZE EFFECT[J]. Engineering Mechanics, 1995, 12(4): 9-16.
  • Cited by

    Periodical cited type(1)

    1. 马园园,周跃亭,赵雪芬,卢绍楠,丁生虎. Love波冲击下一维六方压电准晶涂层与基底间界面裂纹分析. 宁夏大学学报(自然科学版中英文). 2025(01): 16-23 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (329) PDF downloads (62) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return