Processing math: 100%
YANG Hong, SU Xing-yu, ZHAO Yin. BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH[J]. Engineering Mechanics, 2023, 40(10): 112-128. DOI: 10.6052/j.issn.1000-4750.2022.01.0076
Citation: YANG Hong, SU Xing-yu, ZHAO Yin. BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH[J]. Engineering Mechanics, 2023, 40(10): 112-128. DOI: 10.6052/j.issn.1000-4750.2022.01.0076

BUCKLING BEHAVIOR AND MATERIAL CONSTITUTIVE MODEL OF COMPRESSIVE STEEL BAR WITH DIFFERENT STRENGTH

More Information
  • Received Date: January 16, 2022
  • Revised Date: June 08, 2022
  • Accepted Date: June 23, 2022
  • Available Online: June 23, 2022
  • Slenderness ratio and yield strength are the main parameters affecting the buckling behavior of a compressed reinforcing steel bar; however, previous studies focus on the influence of slenderness ratio, there are few systematic research results related to the effect of yield strength on the strength degradation of buckled reinforcement. The monotonic compression tests considering buckling were thusly conducted on HRB400 and HRB500 reinforcement specimens with slenderness ratio of 4.000, 5.000, 6.000, 6.250, 8.000, 9.000, 9.375, 10.000, 12.000 and 15.000, respectively. The average stress-strain (¯σs-¯εs) curves and mid-span transverse displacements of buckled reinforcement specimens were measured. Combined with the corresponding test results of HRB600 reinforcement implemented by the author, the effects of yield strength, slenderness ratio and buckling direction on the compression strength degradation of buckled steel bars were analyzed. The difference between the ¯σs-¯εs curves calculated by D-M model and the buckling behavior of steel bars with different yield strength and slenderness ratio were compared. By analyzing the causes of each kind of error, a modified D-M model was proposed, which can reasonably consider the effects of slenderness ratio and yield strength on buckling. The results show that there are differences in the buckling behavior of specimens with different strength due to the different mechanical properties of steel bar, such as εu, εsh, fy, fu, and etc. The compressive average stress of steel bar can be further improved after buckling if the slenderness ratio is small, while the buckled reinforcement with bigger slenderness ratio cannot reach the yield strength. The buckling directions of specimens with different slenderness ratio or yield strength are different. The calculation results of D-M model have obvious errors, compared with the experimental results of buckling behavior of specimens with three kinds of strength. The modified D-M model can be directly used for steel bar with different yield strength, and the effects of slenderness ratio and yield strength on the ¯σs-¯εs curve of buckled steel bar can be reasonably rendered.
  • [1]
    MASSONE L M. Fundamental principles of the reinforced concrete design code changes in Chile following the MW 8.8 earthquake in 2010 [J]. Engineering Structures, 2013, 56: 1335 − 1345. doi: 10.1016/j.engstruct.2013.07.013
    [2]
    YANG H, SUN P X, DENG Y J. Experiment investigation of the influence of reinforcing bar buckling on seismic behavior of RC columns [J]. Engineering Structures, 2020, 220: 110923. doi: 10.1016/j.engstruct.2020.110923
    [3]
    MOYER M J, KOWALSKY M J. Influence of tension strain on buckling of reinforcement in concrete columns [J]. ACI Structural Journal, 2003, 100(1): 75 − 85.
    [4]
    杨红, 张洛, 张和平. 考虑纵筋屈曲及疲劳损伤的钢筋混凝土柱抗震性能试验与非线性分析[J]. 建筑结构学报, 2013, 34(11): 130 − 140.

    YANG Hong, ZHANG Luo, ZHANG Heping. Experiments and nonlinear analysis on seismic behavior of RC columns considering buckling and fatigue damage of reinforcing steel bar [J]. Journal of Building Structures, 2013, 34(11): 130 − 140. (in Chinese)
    [5]
    PANTAZOPOULOU S J. Detailing for reinforcement stability in RC members [J]. Journal of Structural Engineering, ASCE, 1998, 124(6): 623 − 632. doi: 10.1061/(ASCE)0733-9445(1998)124:6(623)
    [6]
    SPACONE E, FILIPPOU F C, TAUCER F F. Fiber beam column model for nonlinear analysis of R/C frames: Part 1. Formulation [J]. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 711 − 725. doi: 10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
    [7]
    张皓, 李宏男, 曹光伟, 等. 考虑应变率效应的钢筋混凝土动态纤维梁单元模型[J]. 建筑结构学报, 2019, 40(10): 103 − 112.

    ZHANG Hao, LI Hongnan, CAO Guangwei, et al. Fiber beam element model for reinforced concrete structures considering strain rate effects [J]. Journal of Building Structures, 2019, 40(10): 103 − 112. (in Chinese)
    [8]
    MENEGOTTO M, PINTO P. Method of analysis for cyclically loaded R C plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending [C]// Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerlang: International Association for Bridge and Structural Engineering, 1973: 15 − 22.
    [9]
    陈庆军, 余梅霞, 李冰州, 等. 基于ABAQUS 的VLEM 模型及其在RC 剪力墙抗震分析中的研究[J]. 工程力学, 2021, 38(8): 192 − 203. doi: 10.6052/j.issn.1000-4750.2020.10.0779

    CHEN Qingjun, YU Meixia, LI Bingzhou, et al. MVLEM model development based on ABAQUS and its application in aseismic analysis of RC shear wall [J]. Engineering Mechanics, 2021, 38(8): 192 − 203. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0779
    [10]
    CHANG G A, MANDER J B. Seismic energy-based fatigue damage analysis of bridge columns: part I - evaluation of seismic capacity, technical report [R]. Buffalo: National Center for Earthquake Engineering Research, 1994: nceer-94-0006.
    [11]
    李磊, 罗光喜, 王卓涵, 等. 震损钢筋混凝土柱剩余能力的数值模型[J]. 工程力学, 2020, 37(12): 52 − 67. doi: 10.6052/j.issn.1000-4750.2019.12.0789

    LI Lei, LUO Guangxi, WANG Zhuohan, et al. Numerical model for the residual seismic capacity of seismically damaged reinforced concrete columns [J]. Engineering Mechanics, 2020, 37(12): 52 − 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0789
    [12]
    URMSON C R, MANDER J B. Local buckling analysis of longitudinal reinforcing bars [J]. Journal of Structural Engineering, ASCE, 2012, 138(1): 62 − 71. doi: 10.1061/(ASCE)ST.1943-541X.0000414
    [13]
    MONTI G, NUTI C. Nonlinear cyclic behavior of reinforcing bars including buckling [J]. Journal of Structural Engineering, ASCE, 1992, 118(12): 3268 − 3284. doi: 10.1061/(ASCE)0733-9445(1992)118:12(3268)
    [14]
    BAE S, MIESES A M, BAYRAK O. Inelastic buckling of reinforcing bars [J]. Journal of Structural Engineering, ASCE, 2005, 131(2): 314 − 321. doi: 10.1061/(ASCE)0733-9445(2005)131:2(314)
    [15]
    RODRIGUEZ M E, BOTERO J C, VILLA J. Cyclic stress-strain behavior of reinforcing steel including effect of buckling [J]. Journal of Structural Engineering, ASCE, 1999, 125(6): 605 − 612. doi: 10.1061/(ASCE)0733-9445(1999)125:6(605)
    [16]
    MAU S. Effect of tie spacing on inelastic buckling of reinforcing bars [J]. ACI Structural Journal, 1990, 87(6): 671 − 677.
    [17]
    GOMES A, APPLETON J. Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling [J]. Engineering Structures, 1997, 19(10): 822 − 826. doi: 10.1016/S0141-0296(97)00166-1
    [18]
    ZONG Z Y, KUNNATH S K, MONTI G. Simulation of reinforcing bars buckling in circular reinforced concrete columns [J]. ACI Structural Journal, 2013, 110(4): 607 − 616.
    [19]
    DHAKAL R P, MAEKAWA K. Modeling of postyield buckled of reinforcement [J]. Journal of Structural Engineering, ASCE, 2002, 128(9): 1139 − 1147. doi: 10.1061/(ASCE)0733-9445(2002)128:9(1139)
    [20]
    KIM S H, KOUTROMANOS I. Constitutive model for reinforcing steel under cyclic loading [J]. Journal of Structural Engineering, ASCE, 2016, 142(12): 04016133-1 − 04016133-14. doi: 10.1061/(ASCE)ST.1943-541X.0001593
    [21]
    KUNNATH S K, HEO Y A, MOHLE J F. Nonlinear uniaxial material model for reinforcing steel bars [J]. Journal of Structural Engineering, ASCE, 2009, 135(4): 335 − 343. doi: 10.1061/(ASCE)0733-9445(2009)135:4(335)
    [22]
    MASSONE L M, MORODER D. Buckling modeling of reinforcing bars with imperfections [J]. Engineering Structures, 2009, 31(3): 758 − 767. doi: 10.1016/j.engstruct.2008.11.019
    [23]
    杨红, 耿南锋, 刘子珅. 考虑柱纵向钢筋屈曲特征的修正材料本构模型[J]. 工程力学, 2020, 37(6): 174 − 185. doi: 10.6052/j.issn.1000-4750.2019.08.0465

    YANG Hong, GENG Nanfeng, LIU Zishen. A modified constitutive model considering the buckling behavior of longitudinal reinforcement in RC columns [J]. Engineering Mechanics, 2020, 37(6): 174 − 185. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0465
    [24]
    MAZZONI S, MCKENNA F, SCOTT M H, et al. Open system for earthquake engineering simulation users command-language manual [M/OL]. Berkeley: University of California, 2021-05-24. http://opensees.berkeley.edu/wiki/index.php/Command_Manual.
    [25]
    AKKAYA Y, GUNER S, VECCHIO F J. Constitutive model for inelastic buckling behavior of reinforcing bars [J]. ACI Structural Journal, 2019, 116(3): 195 − 204.
    [26]
    杨红, 蒋惠, 冉小峰. HRB600 钢筋屈曲受力性能试验研究[J]. 工程力学, 2022, 39(6): 83 − 98. doi: 10.6052/j.issn.1000-4750.2021.03.0198

    YANG Hong, JIANG Hui, RAN Xiaofeng. Experimental research on buckling behavior of HRB600 steel bar [J]. Engineering Mechanics, 2022, 39(6): 83 − 98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0198
    [27]
    GB/T 1499.2−2018, 钢筋混凝土用钢第2部分: 热轧带肋钢筋[S]. 北京: 中国标准出版社, 2018.

    GB/T 1499.2−2018, Steel for the reinforcement of concrete-Part 2: Hot rolled ribbed bars [S]. Beijing: Standards Press of China, 2018. (in Chinese)
    [28]
    刘子珅, 杨红, 张吉庆. 基于横向挠度的钢筋屈曲状态判断方法研究[J]. 工程力学, 2018, 35(2): 144 − 152. doi: 10.6052/j.issn.1000-4750.2016.10.0770

    LIU Zishen, YANG Hong, ZHANG Jiqing. Research on buckling state determination of reinforcing bars based on lateral deflection [J]. Engineering Mechanics, 2018, 35(2): 144 − 152. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.10.0770
    [29]
    MANDER J B. Seismic design of bridge piers [D]. Christchurch, New Zealand: University of Canterbury, 1983.
    [30]
    SPURR D D, PAULAY T. Post-elastic behaviour of reinforced concrete frame-wall components and assemblages subjected to simulated seismic loading [R]. Christchurch, New Zealand: University of Canterbury, 1984.
    [31]
    DODD L L, RESTREPO-POSADA J I. Model for predicting cyclic behavior of reinforcing steel [J]. Journal of Structural Engineering, ASCE, 1995, 121(3): 433 − 445. doi: 10.1061/(ASCE)0733-9445(1995)121:3(433)
  • Cited by

    Periodical cited type(4)

    1. 成虎,邱开发,王仁宇,王东升,孙治国. 非均匀锈蚀钢筋屈曲性能研究. 公路交通科技. 2025(02): 146-160 .
    2. 余珊珊,姚颖康,孙金山,贾永胜. 爆后钢筋骨架零长度塑性铰失稳判别模型与试验验证. 工程爆破. 2024(02): 9-18 .
    3. 曲慧,张随心,李伟,李亚锦. 考虑屈曲影响的不锈钢-碳钢复合钢筋滞回性能试验研究. 工程力学. 2024(12): 106-115 . 本站查看
    4. 秦磊,周宇. 约束应力下UHPC直剪性能试验及有限元验证. 混凝土世界. 2023(05): 39-45 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (463) PDF downloads (95) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return