Citation: | SUN Xiao-wang, SUN Kui-yuan, QIN Wei-wei, ZHANG Shao-yan, FU Tiao-qi, WANG Xian-hui. DESIGN AND OPTIMIZATION OF FUNCTIONALLY GRADED LOWER LIMBS PROTECTION SYSTEM[J]. Engineering Mechanics, 2023, 40(10): 190-203. DOI: 10.6052/j.issn.1000-4750.2022.01.0070 |
[1] |
陈欣. 关于军用轮式车辆发展的思考[J]. 军事交通学院学报, 2009, 11(1): 1 − 5. doi: 10.3969/j.issn.1674-2192.2009.01.001
CHEN Xin. Thoughts on the development of military wheeled vehicles [J]. Journal of Academy of Military Transportation, 2009, 11(1): 1 − 5. (in Chinese) doi: 10.3969/j.issn.1674-2192.2009.01.001
|
[2] |
斯蒂芬·W·米勒, 毕忠安, 刘家健, 等. 勇往直前 现代战场上的战斗工程车辆[J]. 坦克装甲车辆, 2018, 511(21): 47 − 51.
MILLER S W, BI Zhongan, LIU Jiajian, et al. Forge ahead combat engineering vehicles on the modern battlefield [J]. Tank and Armored Vehicle, 2018, 511(21): 47 − 51. (in Chinese)
|
[3] |
张钱城, 郝方楠, 李裕春. 爆炸冲击载荷作用下车辆和人员的损伤与防护[J]. 力学与实践, 2014, 36(5): 527 − 539. doi: 10.6052/1000-0879-13-539
ZHANG Qiancheng, HAO Fangnan, LI Yuchun, et al. Damage and protection of vehicles and personnel under blast loading [J]. Mechanics in Engineering, 2014, 36(5): 527 − 539. (in Chinese) doi: 10.6052/1000-0879-13-539
|
[4] |
郭启涛. 某型防地雷车车身结构优化设计研究 [D]. 南京: 南京理工大学, 2015.
GUO Qitao. Research on the optimization design of the body structure of a certain type of mine-resistant vehicle [D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)
|
[5] |
任朋飞. 抗冲击型车身柔性底部结构防护技术研究 [D]. 南京: 南京理工大学, 2017.
REN Pengfei. Research on protection technology of impact-resistant flexible underbody structure [D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
|
[6] |
NIINO M, HIRAI T, WATANABE R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft [J]. Journal of the Japan Society for Composite Materials, 1987, 13: 257 − 264.
|
[7] |
HUANG C Y, CHEN Y L. Effect of varied alumina/zirconia content on ballistic performance of a functionally graded material [J]. International Journal of Refractory Metals and Hard Material, 2017, 67: 129 − 140.
|
[8] |
ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient [J]. Journal of Sandwich Structures & Materials, 2014, 16(2): 125 − 147.
|
[9] |
尹冠生, 姚兆楠. 梯度负泊松比蜂窝材料的冲击动力学性能分析[J]. 动力学与控制学报, 2017, 15(1): 52 − 58.
YIN Guansheng, YAO Zhaonan. Dynamic crushing performance of graded auxetic honeycombs with negative poisson’s ratio [J]. Journal of Dynamics and Control, 2017, 15(1): 52 − 58. (in Chinese)
|
[10] |
徐世烺, 李锐, 李庆华. 超高韧性水泥基复合材料功能 梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123 − 133, 178.
XU Shilang, LI Rui, LI Qinghua. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123 − 133, 178. (in Chinese)
|
[11] |
LIU X R, TIAN X G, LU T J, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading [J]. International Journal of Mechanical Sciences, 2014, 84: 61 − 72. doi: 10.1016/j.ijmecsci.2014.03.021
|
[12] |
李谱, 乐京霞, 李晓彬, 等. 厚度梯度型箭形负泊松比蜂窝基座抗冲击性能[J]. 爆炸与冲击, 2020, 40(7): 27 − 37. doi: 10.11883/bzycj-2019-0414
LI Pu, YUE Jingxia, LI Xiaobin, et al. Simulation on V-shaped bottom composite armor with honeycomb sandwich [J]. Explosion and Shock Waves, 2020, 40(7): 27 − 37. (in Chinese) doi: 10.11883/bzycj-2019-0414
|
[13] |
谢军, 李星, 汪文帅. 功能梯度压电压磁圆柱轴对称的静力学响应[J]. 工程力学, 2021, 38(11): 229 − 239. doi: 10.6052/j.issn.1000-4750.2020.10.0754
XIE Jun, LI Xing, WANG Wenshuai. The static response of an axisymmetric functionally graded piezoelectric/ piezomagnetic cylinder [J]. Engineering Mechanics, 2021, 38(11): 229 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0754
|
[14] |
CUI X, ZHANG S, ZHANG C, et al. Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials [J]. Journal of Materials Engineering, 2020, 48(9): 13 − 23.
|
[15] |
卢放. 基于多学科优化设计方法的白车身轻量化研究[D]. 长春: 吉林大学, 2014.
LU Fang. Research on lightweight body-in-white based on multidisciplinary optimization design method [D]. Changchun: Jilin University, 2014. (in Chinese)
|
[16] |
魏然. 爆炸冲击下车身结构防护机理及多学科优化研究[D]. 南京: 南京理工大学, 2017.
WEI Ran. Research on protection mechanism and multidisciplinary optimization of vehicle body structure under explosion impact [D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
|
[17] |
陈镇鹏, 宋言, 张雄, 等. 耦合有限元物质点法及其在流固耦合问题中的应用[J]. 工程力学, 2017, 34(12): 14 − 21.
CHEN Zhenpeng, SONG Yan, ZHANG Xiong, et al. Coupled finite element material point method and its application to fluid structure coupling problems [J]. Engineering mechanics, 2017, 34(12): 14 − 21. (in Chinese)
|
[18] |
HALLQUIST J O. LS-DYNA keyword user’s manual [M]. R11. Livermore, California, USA: Livermore Software Technology Corporation, 2018.
|
[19] |
North Atlantic Treaty Organization AEP-55. Procedures for evaluating the protection level of armored vehicles-mine threat: Volume 2 (Edition 2) [M]. Brussels, Belguim: Nato Standardization Agency, 2011.
|
[20] |
吉美娟, 郭彦峰, 付云岗. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668
JI Meijuan, GUO Yanfeng, FU Yungang. Study on drop impact cushioning preformance of paper corrugaed-honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668
|
[21] |
何强, 马大为, 张震东, 等. 功能梯度蜂窝材料的面内冲击性能研究[J]. 工程力学, 2016, 33(2): 172 − 178.
HE Qiang, MA Dawei, ZHANG Zhendong, et al. Research on the in-plane dynamic crushing of functionally graded honeycombs [J]. Engineering Mechanics, 2016, 33(2): 172 − 178. (in Chinese)
|
[22] |
MOU X N, LU L X, ZHOU Y L. Evaluation of in-plane compressive densification strain of honeycomb paperboard [J]. Advances in Mechanical Engineering, 2020, 12(4): 0913424. doi: 10.1177/1687814020913424
|
[23] |
XU F X, ZHANG X, ZHANG H. A review on functionally graded structures and materials for energy absorption [J]. Engineering Structures, 2018, 171: 309 − 325. doi: 10.1016/j.engstruct.2018.05.094
|
[24] |
刘鑫, 吴钢, 尹来荣. 基于近似模型管理的汽车安全带约束系统优化设计[J]. 振动与冲击, 2016(6): 132 − 136. doi: 10.13465/j.cnki.jvs.2016.06.024
LIU Xin, WU Gang, YIN Lairong. Optimal design of a seat belt restraint system based on approximate model management [J]. Vibration and Shock, 2016(6): 132 − 136. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.06.024
|
[25] |
戴英彪. 基于拉丁超立方试验设计的事故再现结果不确定性分析[D]. 长沙: 长沙理工大学, 2011.
DAI Yingbiao. Uncertainty analysis of accident recurrence results based on Latin hypercube experimental design [D]. Changsha: Changsha University of Science and Technology, 2011. (in Chinese)
|
[26] |
李正良, 彭思思, 王涛. 基于混合加点准则的代理模型优化设计方法[J]. 工程力学, 2022, 39(1): 27 − 33. doi: 10.6052/j.issn.1000-4750.2020.12.0925
LI Zhengliang, PENG Sisi, WANG Tao. Agent model optimization design method based on mixed point adding criterion [J]. Engineering Mechanics, 2022, 39(1): 27 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0925
|
[27] |
郝亮. 基于代理模型的车身吸能结构抗撞性优化[D]. 长春: 吉林大学, 2013.
HAO Liang. Crashworthiness optimization of body energy-absorbing structure based on proxy model [D]. Changchun: Jilin University, 2013. (in Chinese)
|
[28] |
杜波, 金光, 周经伦. 基于代理模型的武器装备体系优化算法研究[J]. 计算机工程与科学, 2012(6): 78 − 82. doi: 10.3969/j.issn.1007-130X.2012.06.014
DU Bo, JIN Guang, ZHOU Jinglun. Research on the optimization algorithms for weapon equipment systems based on the surrogate model [J]. Computer Engineering & Science, 2012(6): 78 − 82. (in Chinese) doi: 10.3969/j.issn.1007-130X.2012.06.014
|
[29] |
DEB K. Kalyanmoy multi-objective optimization using evolutionary algorithms [M]. New York: John Wiley & Sons, Ltd., 2001.
|
[1] | XU Ben-sheng, ZANG Chao-ping, MIAO Hui, ZHANG Gen-bei. ROBUST OPTIMIZATION DESIGN METHODS OF STRUCTURAL DYNAMICS: A REVIEW[J]. Engineering Mechanics, 2019, 36(4): 24-36. DOI: 10.6052/j.issn.1000-4750.2018.09.0484 |
[2] | LI Hui, LI Qing-wei. STRUCTURAL DESIGN AND OPTIMIZATION OF FEED-SUPPORT TOWERS OF FAST TELESCOPE[J]. Engineering Mechanics, 2017, 34(增刊): 273-281. DOI: 10.6052/j.issn.1000-4750.2016.04.S054 |
[3] | WANG Cun-fu, ZHAO Min, GE Tong. STUDY ON THE TOPOLOGY OPTIMIZATION DESIGN OF UNDERWATER PRESSURE STRUCTURE[J]. Engineering Mechanics, 2015, 32(1): 247-256. DOI: 10.6052/j.issn.1000-4750.2013.07.0705 |
[4] | SONG Zong-feng, CHEN Jian-jun, ZHU Zeng-qing, ZHANG Yao-qiang. TOPOLOGY OPTIMIZATION DESIGN OF PLANAR CONTINUUM STRUCTURE WITH FUZZY PARAMETERS[J]. Engineering Mechanics, 2008, 25(10): 6-011. |
[5] | HUANG Ji-zhuo, WANG Zhan. TOPOLOGY OPTIMIZATION DESIGN FOR DISCRETE STRUCTURES USING GENETIC ALGORITHM[J]. Engineering Mechanics, 2008, 25(5): 32-038. |
[6] | XIAO Fang-hao, JIAN Kai-lin. APPLICATION OF ROBUST OPTIMAL DESIGN IN STRUCTURAL DYNAMICS[J]. Engineering Mechanics, 2007, 24(增Ⅰ): 62-065. |
[7] | WU Jing, LIU Rong-gui, SU Jun. APPLICATION OF THE DUAL THEORY TO THE CFST STRUCTURE'S OPTIMIZATION DESIGN[J]. Engineering Mechanics, 1999, 16(4): 97-104,. |
[8] | Jiang Jianxiang, Lu Zhitao. OPTIMAL DESIGN FOR PRESTRESSED CONCRETE WAFFLE STRUCTURE[J]. Engineering Mechanics, 1996, 13(3): 47-53. |
[9] | Chen Yuyue. THE OPTIMAL DESIGN OF STRUCTURE OF GRP/COMPOSITE BIADES[J]. Engineering Mechanics, 1987, 4(4): 46-53. |
[10] | Zhu Bofang. Several Methods for Structural Optimization[J]. Engineering Mechanics, 1985, 2(2): 43-51. |