SUN Xiao-wang, SUN Kui-yuan, QIN Wei-wei, ZHANG Shao-yan, FU Tiao-qi, WANG Xian-hui. DESIGN AND OPTIMIZATION OF FUNCTIONALLY GRADED LOWER LIMBS PROTECTION SYSTEM[J]. Engineering Mechanics, 2023, 40(10): 190-203. DOI: 10.6052/j.issn.1000-4750.2022.01.0070
Citation: SUN Xiao-wang, SUN Kui-yuan, QIN Wei-wei, ZHANG Shao-yan, FU Tiao-qi, WANG Xian-hui. DESIGN AND OPTIMIZATION OF FUNCTIONALLY GRADED LOWER LIMBS PROTECTION SYSTEM[J]. Engineering Mechanics, 2023, 40(10): 190-203. DOI: 10.6052/j.issn.1000-4750.2022.01.0070

DESIGN AND OPTIMIZATION OF FUNCTIONALLY GRADED LOWER LIMBS PROTECTION SYSTEM

More Information
  • Received Date: January 16, 2022
  • Revised Date: June 06, 2022
  • Available Online: June 23, 2022
  • Aiming at the crew safety problem in the environment of explosion and shock at the bottom of vehicle, this paper combines the experimental research with finite element simulation to study the movement and damage of the crew's lower limbs in the explosion and shock environment. A honeycomb aluminum lightning protection foot pad is designed as the protection device of the crew's lower limbs. The protective performance of the foot pad is studied in the explosion and shock environment, the influence of different gradient structures on the response of lower limbs of the crews in the vehicle is studied, the multi-objective optimization design of the honeycomb aluminum lightning protection foot pad is carried out, and the thickness-gradient honeycomb aluminum lightning protection foot pad is obtained. The results show that the honeycomb aluminum lightning protection foot pad designed in this paper can effectively reduce the lower tibia force and the injury of lower limbs of the crew by absorbing energy and reducing the impact strength, the gradient structure has better energy absorption characteristics than the homogeneous structure, different gradient structures have different protection effects on lower limbs of the crew, and the thickness-gradient has the greatest impact on the response of lower limbs of the crew. Compared with the original model, the optimized crew lower limbs protection device can reduce the left lower tibia force by 26.35%, the right lower tibia force by 24.69% and the total mass of the foot pad by 56.59%.
  • [1]
    陈欣. 关于军用轮式车辆发展的思考[J]. 军事交通学院学报, 2009, 11(1): 1 − 5. doi: 10.3969/j.issn.1674-2192.2009.01.001

    CHEN Xin. Thoughts on the development of military wheeled vehicles [J]. Journal of Academy of Military Transportation, 2009, 11(1): 1 − 5. (in Chinese) doi: 10.3969/j.issn.1674-2192.2009.01.001
    [2]
    斯蒂芬·W·米勒, 毕忠安, 刘家健, 等. 勇往直前 现代战场上的战斗工程车辆[J]. 坦克装甲车辆, 2018, 511(21): 47 − 51.

    MILLER S W, BI Zhongan, LIU Jiajian, et al. Forge ahead combat engineering vehicles on the modern battlefield [J]. Tank and Armored Vehicle, 2018, 511(21): 47 − 51. (in Chinese)
    [3]
    张钱城, 郝方楠, 李裕春. 爆炸冲击载荷作用下车辆和人员的损伤与防护[J]. 力学与实践, 2014, 36(5): 527 − 539. doi: 10.6052/1000-0879-13-539

    ZHANG Qiancheng, HAO Fangnan, LI Yuchun, et al. Damage and protection of vehicles and personnel under blast loading [J]. Mechanics in Engineering, 2014, 36(5): 527 − 539. (in Chinese) doi: 10.6052/1000-0879-13-539
    [4]
    郭启涛. 某型防地雷车车身结构优化设计研究 [D]. 南京: 南京理工大学, 2015.

    GUO Qitao. Research on the optimization design of the body structure of a certain type of mine-resistant vehicle [D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)
    [5]
    任朋飞. 抗冲击型车身柔性底部结构防护技术研究 [D]. 南京: 南京理工大学, 2017.

    REN Pengfei. Research on protection technology of impact-resistant flexible underbody structure [D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [6]
    NIINO M, HIRAI T, WATANABE R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft [J]. Journal of the Japan Society for Composite Materials, 1987, 13: 257 − 264.
    [7]
    HUANG C Y, CHEN Y L. Effect of varied alumina/zirconia content on ballistic performance of a functionally graded material [J]. International Journal of Refractory Metals and Hard Material, 2017, 67: 129 − 140.
    [8]
    ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient [J]. Journal of Sandwich Structures & Materials, 2014, 16(2): 125 − 147.
    [9]
    尹冠生, 姚兆楠. 梯度负泊松比蜂窝材料的冲击动力学性能分析[J]. 动力学与控制学报, 2017, 15(1): 52 − 58.

    YIN Guansheng, YAO Zhaonan. Dynamic crushing performance of graded auxetic honeycombs with negative poisson’s ratio [J]. Journal of Dynamics and Control, 2017, 15(1): 52 − 58. (in Chinese)
    [10]
    徐世烺, 李锐, 李庆华. 超高韧性水泥基复合材料功能 梯度板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123 − 133, 178.

    XU Shilang, LI Rui, LI Qinghua. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123 − 133, 178. (in Chinese)
    [11]
    LIU X R, TIAN X G, LU T J, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading [J]. International Journal of Mechanical Sciences, 2014, 84: 61 − 72. doi: 10.1016/j.ijmecsci.2014.03.021
    [12]
    李谱, 乐京霞, 李晓彬, 等. 厚度梯度型箭形负泊松比蜂窝基座抗冲击性能[J]. 爆炸与冲击, 2020, 40(7): 27 − 37. doi: 10.11883/bzycj-2019-0414

    LI Pu, YUE Jingxia, LI Xiaobin, et al. Simulation on V-shaped bottom composite armor with honeycomb sandwich [J]. Explosion and Shock Waves, 2020, 40(7): 27 − 37. (in Chinese) doi: 10.11883/bzycj-2019-0414
    [13]
    谢军, 李星, 汪文帅. 功能梯度压电压磁圆柱轴对称的静力学响应[J]. 工程力学, 2021, 38(11): 229 − 239. doi: 10.6052/j.issn.1000-4750.2020.10.0754

    XIE Jun, LI Xing, WANG Wenshuai. The static response of an axisymmetric functionally graded piezoelectric/ piezomagnetic cylinder [J]. Engineering Mechanics, 2021, 38(11): 229 − 239. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0754
    [14]
    CUI X, ZHANG S, ZHANG C, et al. Research status and prospect of laser additive manufacturing technology for high performance gradient functional materials [J]. Journal of Materials Engineering, 2020, 48(9): 13 − 23.
    [15]
    卢放. 基于多学科优化设计方法的白车身轻量化研究[D]. 长春: 吉林大学, 2014.

    LU Fang. Research on lightweight body-in-white based on multidisciplinary optimization design method [D]. Changchun: Jilin University, 2014. (in Chinese)
    [16]
    魏然. 爆炸冲击下车身结构防护机理及多学科优化研究[D]. 南京: 南京理工大学, 2017.

    WEI Ran. Research on protection mechanism and multidisciplinary optimization of vehicle body structure under explosion impact [D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [17]
    陈镇鹏, 宋言, 张雄, 等. 耦合有限元物质点法及其在流固耦合问题中的应用[J]. 工程力学, 2017, 34(12): 14 − 21.

    CHEN Zhenpeng, SONG Yan, ZHANG Xiong, et al. Coupled finite element material point method and its application to fluid structure coupling problems [J]. Engineering mechanics, 2017, 34(12): 14 − 21. (in Chinese)
    [18]
    HALLQUIST J O. LS-DYNA keyword user’s manual [M]. R11. Livermore, California, USA: Livermore Software Technology Corporation, 2018.
    [19]
    North Atlantic Treaty Organization AEP-55. Procedures for evaluating the protection level of armored vehicles-mine threat: Volume 2 (Edition 2) [M]. Brussels, Belguim: Nato Standardization Agency, 2011.
    [20]
    吉美娟, 郭彦峰, 付云岗. 纸瓦楞-蜂窝复合夹层结构的跌落冲击缓冲性能研究[J]. 工程力学, 2020, 37(10): 247 − 256. doi: 10.6052/j.issn.1000-4750.2019.11.0668

    JI Meijuan, GUO Yanfeng, FU Yungang. Study on drop impact cushioning preformance of paper corrugaed-honeycomb composite sandwich structure [J]. Engineering Mechanics, 2020, 37(10): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0668
    [21]
    何强, 马大为, 张震东, 等. 功能梯度蜂窝材料的面内冲击性能研究[J]. 工程力学, 2016, 33(2): 172 − 178.

    HE Qiang, MA Dawei, ZHANG Zhendong, et al. Research on the in-plane dynamic crushing of functionally graded honeycombs [J]. Engineering Mechanics, 2016, 33(2): 172 − 178. (in Chinese)
    [22]
    MOU X N, LU L X, ZHOU Y L. Evaluation of in-plane compressive densification strain of honeycomb paperboard [J]. Advances in Mechanical Engineering, 2020, 12(4): 0913424. doi: 10.1177/1687814020913424
    [23]
    XU F X, ZHANG X, ZHANG H. A review on functionally graded structures and materials for energy absorption [J]. Engineering Structures, 2018, 171: 309 − 325. doi: 10.1016/j.engstruct.2018.05.094
    [24]
    刘鑫, 吴钢, 尹来荣. 基于近似模型管理的汽车安全带约束系统优化设计[J]. 振动与冲击, 2016(6): 132 − 136. doi: 10.13465/j.cnki.jvs.2016.06.024

    LIU Xin, WU Gang, YIN Lairong. Optimal design of a seat belt restraint system based on approximate model management [J]. Vibration and Shock, 2016(6): 132 − 136. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.06.024
    [25]
    戴英彪. 基于拉丁超立方试验设计的事故再现结果不确定性分析[D]. 长沙: 长沙理工大学, 2011.

    DAI Yingbiao. Uncertainty analysis of accident recurrence results based on Latin hypercube experimental design [D]. Changsha: Changsha University of Science and Technology, 2011. (in Chinese)
    [26]
    李正良, 彭思思, 王涛. 基于混合加点准则的代理模型优化设计方法[J]. 工程力学, 2022, 39(1): 27 − 33. doi: 10.6052/j.issn.1000-4750.2020.12.0925

    LI Zhengliang, PENG Sisi, WANG Tao. Agent model optimization design method based on mixed point adding criterion [J]. Engineering Mechanics, 2022, 39(1): 27 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.12.0925
    [27]
    郝亮. 基于代理模型的车身吸能结构抗撞性优化[D]. 长春: 吉林大学, 2013.

    HAO Liang. Crashworthiness optimization of body energy-absorbing structure based on proxy model [D]. Changchun: Jilin University, 2013. (in Chinese)
    [28]
    杜波, 金光, 周经伦. 基于代理模型的武器装备体系优化算法研究[J]. 计算机工程与科学, 2012(6): 78 − 82. doi: 10.3969/j.issn.1007-130X.2012.06.014

    DU Bo, JIN Guang, ZHOU Jinglun. Research on the optimization algorithms for weapon equipment systems based on the surrogate model [J]. Computer Engineering & Science, 2012(6): 78 − 82. (in Chinese) doi: 10.3969/j.issn.1007-130X.2012.06.014
    [29]
    DEB K. Kalyanmoy multi-objective optimization using evolutionary algorithms [M]. New York: John Wiley & Sons, Ltd., 2001.
  • Related Articles

    [1]XU Ben-sheng, ZANG Chao-ping, MIAO Hui, ZHANG Gen-bei. ROBUST OPTIMIZATION DESIGN METHODS OF STRUCTURAL DYNAMICS: A REVIEW[J]. Engineering Mechanics, 2019, 36(4): 24-36. DOI: 10.6052/j.issn.1000-4750.2018.09.0484
    [2]LI Hui, LI Qing-wei. STRUCTURAL DESIGN AND OPTIMIZATION OF FEED-SUPPORT TOWERS OF FAST TELESCOPE[J]. Engineering Mechanics, 2017, 34(增刊): 273-281. DOI: 10.6052/j.issn.1000-4750.2016.04.S054
    [3]WANG Cun-fu, ZHAO Min, GE Tong. STUDY ON THE TOPOLOGY OPTIMIZATION DESIGN OF UNDERWATER PRESSURE STRUCTURE[J]. Engineering Mechanics, 2015, 32(1): 247-256. DOI: 10.6052/j.issn.1000-4750.2013.07.0705
    [4]SONG Zong-feng, CHEN Jian-jun, ZHU Zeng-qing, ZHANG Yao-qiang. TOPOLOGY OPTIMIZATION DESIGN OF PLANAR CONTINUUM STRUCTURE WITH FUZZY PARAMETERS[J]. Engineering Mechanics, 2008, 25(10): 6-011.
    [5]HUANG Ji-zhuo, WANG Zhan. TOPOLOGY OPTIMIZATION DESIGN FOR DISCRETE STRUCTURES USING GENETIC ALGORITHM[J]. Engineering Mechanics, 2008, 25(5): 32-038.
    [6]XIAO Fang-hao, JIAN Kai-lin. APPLICATION OF ROBUST OPTIMAL DESIGN IN STRUCTURAL DYNAMICS[J]. Engineering Mechanics, 2007, 24(增Ⅰ): 62-065.
    [7]WU Jing, LIU Rong-gui, SU Jun. APPLICATION OF THE DUAL THEORY TO THE CFST STRUCTURE'S OPTIMIZATION DESIGN[J]. Engineering Mechanics, 1999, 16(4): 97-104,.
    [8]Jiang Jianxiang, Lu Zhitao. OPTIMAL DESIGN FOR PRESTRESSED CONCRETE WAFFLE STRUCTURE[J]. Engineering Mechanics, 1996, 13(3): 47-53.
    [9]Chen Yuyue. THE OPTIMAL DESIGN OF STRUCTURE OF GRP/COMPOSITE BIADES[J]. Engineering Mechanics, 1987, 4(4): 46-53.
    [10]Zhu Bofang. Several Methods for Structural Optimization[J]. Engineering Mechanics, 1985, 2(2): 43-51.

Catalog

    Article Metrics

    Article views (294) PDF downloads (47) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return