Citation: | LIU Wei-ji, XIANG Chang, TAN Bin, ZHU Xiao-hua, HU Hai, LI Zhi-lin. THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES[J]. Engineering Mechanics, 2023, 40(10): 222-236. DOI: 10.6052/j.issn.1000-4750.2022.01.0062 |
[1] |
ROSTAMSOWLAT I, EVANS B, KWON H J. A review of the frictional contact in rock cutting with a PDC bit [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109665. doi: 10.1016/j.petrol.2021.109665
|
[2] |
GUO Z, DENG R. Research on tooth wear of non-spherical single-cone bit in hard rock formation of deep well [J]. Engineering Failure Analysis, 2021, 125: 105408. doi: 10.1016/j.engfailanal.2021.105408
|
[3] |
刘伟吉, 王燕飞, 郭天阳, 等. 单齿切削破碎非均质花岗岩微宏观机理研究[J]. 工程力学, 2022, 39(6): 122 − 133. doi: 10.6052/j.issn.1000-4750.2021.03.0213
LIU Weiji, WANG Yanfei, GUO Tianyang, et al. Investigation on the rock cutting mechanism of heterogeneous granite using a grain-based modeling approach [J]. Engineering Mechanics, 2022, 39(6): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0213
|
[4] |
刘伟吉, 阳飞龙, 董洪铎, 等. 异形PDC齿混合切削破碎花岗岩特性研究[J]. 工程力学, 2023, 40(3): 245 − 256. doi: 10.6052/j.issn.1000-4750.2021.10.0761
LIU Weiji, YANG Feilong, DONG Hongduo, et al. Investigate on the mixed-cutting of specially-shaped pdc cutters in granite [J]. Engineering Mechanics, 2023, 40(3): 245 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0761
|
[5] |
李玮, 何选蓬, 闫铁, 等. 近钻头扭转冲击器破岩机理及应用[J]. 石油钻采工艺, 2014, 36(5): 1 − 4. doi: 10.13639/j.odpt.2014.05.001
LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter [J]. Oil Drilling & Production Technology, 2014, 36(5): 1 − 4. (in Chinese) doi: 10.13639/j.odpt.2014.05.001
|
[6] |
卢玲玲, 何东升, 张伟东, 等. 扭转冲击器研究及应用[J]. 石油矿场机械, 2015, 44(6): 82 − 85.
LU Lingling, HE Dongsheng, ZHANG Weidong, et al. Research and Application Prospect of Torsional Impact Hammer [J]. Oil Field Equipment, 2015, 44(6): 82 − 85. (in Chinese)
|
[7] |
刘书斌, 倪红坚, 张恒, 等. 多维冲击器钻井提速技术及应用[J]. 石油机械, 2020, 48(10): 44 − 50.
LIU Shubin, NI Hongjian, ZHANG Heng, et al. Multi-dimensional impactor and its application [J]. China Petroleum Machinery, 2020, 48(10): 44 − 50. (in Chinese)
|
[8] |
WANG W, LIU G, LI J, et al. Numerical simulation study on rock-breaking process and mechanism of compound impact drilling [J]. Energy Reports, 2021, 7: 3137 − 3148. doi: 10.1016/j.egyr.2021.05.040
|
[9] |
菅志军, 张文华, 刘国辉, 等. 石油钻井用液动冲击器研究现状及发展趋势[J]. 石油机械, 2001, 29(11): 43 − 46. doi: 10.3969/j.issn.1001-4578.2001.11.017
JIAN Zhijun, ZHANG Wenhua, LIU Guohui, et al. Current status and developing trend of research on hydraulic hole hammer for oil drilling [J]. China Petroleum Machinery, 2001, 29(11): 43 − 46. (in Chinese) doi: 10.3969/j.issn.1001-4578.2001.11.017
|
[10] |
王四一, 李泉新, 刘建林, 等. 冲击螺杆马达研制[J]. 煤田地质与勘探, 2019, 47(5): 225 − 231. doi: 10.3969/j.issn.1001-1986.2019.05.032
WANG Siyi, LI Quanxin, LIU Jianlin, et al. Development of impact screw motor [J]. Coal Geology & Exploration, 2019, 47(5): 225 − 231. (in Chinese) doi: 10.3969/j.issn.1001-1986.2019.05.032
|
[11] |
刘伟吉, 阳飞龙, 祝效华, 等. 异形PDC齿切削破岩提速机理研究[J]. 中国机械工程, 2021: 1 − 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html
LIU Wejii, YANG Feilong, ZHU Xiaohua, et al. Research on the Mechanism of Rock Breaking and Speed Increase in Cutting with Abnormal PDC Cutter[J]. CHINA MECHANICAL ENGINEERING, 2021: 1 − 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html
|
[12] |
吴泽兵, 吕澜涛, 王勇勇, 等. 牙轮—PDC混合钻头的破岩特性及温度场变化[J]. 天然气工业, 2020, 40(3): 99 − 106.
WU Zebing, LYU Lantao, WANG Yongyong, et al. Rock-breaking characteristics and temperature field change of cone-PDO hybrid bits [J]. Natural Gas Industry, 2020, 40(3): 99 − 106. (in Chinese)
|
[13] |
RAUENZAHN R M, TESTER J W. Rock failure mechanisms of flame-jet thermal spallation drilling—theory and experimental testing [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(5): 381 − 399.
|
[14] |
ZHU X, LUO Y, LIU W. On the rock-breaking mechanism of plasma channel drilling technology [J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356. doi: 10.1016/j.petrol.2020.107356
|
[15] |
Ferri, Hassani, Pejman, et al. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. 岩石力学与岩土工程学报: 英文版, 2016(1): 15. doi: 10.1016/j.jrmge.2015.10.004
HASSANI F, PEJMAN M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1 − 15. doi: 10.1016/j.jrmge.2015.10.004
|
[16] |
RUI F, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139(7): 104653.
|
[17] |
LYU Z, SONG X, LI G. An analytical method to determine rock spallation temperature and degree of heterogeneity in thermal spallation drilling for geothermal energy [J]. Geothermics, 2019, 77: 99 − 105.
|
[18] |
WILLIAMS R E, POTTER R M, MISKA S. Experiments in thermal spallation of various rocks [J]. Journal of Energy Resources Technology, 1996, 118(1): 2 − 6. doi: 10.1115/1.2792690
|
[19] |
PRESTON F W, WHITE H E. Observations on spalling [J]. Journal of the American Ceramic Society, 1934, 17: 137 − 144. doi: 10.1111/j.1151-2916.1934.tb19296.x
|
[20] |
PANEL M L. The future of geothermal energy. Impact of enhanced geothermal systems [EGS] on the United States in the 21st century [J]. Geothermics, 2006, 17(5/6): 881 − 882.
|
[21] |
WAN Z J, ZHAO Y S, YUAN Z, et al. Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure [J]. Procedia Earth and Planetary Science, 2009, 1(1): 565 − 570. doi: 10.1016/j.proeps.2009.09.090
|
[22] |
GARITTE B, GENS A, VAUNAT J. Thermal conductivity of argillaceous rocks: determination methodology using in situ heating tests [J]. Rock Mechanics & Rock Engineering, 2014, 47(1): 111 − 129.
|
[23] |
GUO T, TANG S, LIU S, et al. Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress [J]. Engineering Fracture Mechanics, 2020, 240: 107350. doi: 10.1016/j.engfracmech.2020.107350
|
[24] |
DAI X, HUANG Z, WU X, et al. Failure analysis of high-temperature granite under the joint action of cutting and liquid nitrogen jet impingement [J]. Rock Mechanics and Rock Engineering, 2021, 54: 6249 − 6264. doi: 10.1007/s00603-021-02600-1
|
[25] |
姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915
YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
|
[26] |
张志镇, 高峰, 高亚楠, 等. 高温影响下花岗岩孔径分布的分形结构及模型[J]. 岩石力学与工程学报, 2016, 35(12): 2426 − 2438. doi: 10.13722/j.cnki.jrme.2016.0798
ZHANG Zhizhen, GAO Feng, GAO Yanan, et al. Fractal structure and model of pore size distribution of granite under high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2426 − 2438. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0798
|
[27] |
夏晨, 戚承志, 利学, 等. 裂纹面动摩擦作用对脆性材料动力破坏的影响[J]. 工程力学, 2022, 39(12): 50 − 59. doi: 10.6052/j.issn.1000-4750.2021.07.0552
XIA Chen, QI Chengzhi, LI Xue, et al. Effect of dynamic friction on crack surface on dynamic failure of brittle materials [J]. Engineering Mechanics, 2022, 39(12): 50 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0552
|
[28] |
韩智铭, 刘庆宽, 王雪, 等. 岩体多裂纹扩展演化过程数值流形方法研究[J]. 工程力学, 2021, 38(增刊): 7 − 13. doi: 10.6052/j.issn.1000-4750.2020.05.S003
HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass [J]. Engineering Mechanics, 2021, 38(Suppl): 7 − 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S003
|
[29] |
WANG C, CHEN L, LIU J, et al. Experimental characterization of thermo-mechanical coupling properties of Beishan granite [J]. European Journal of Environmental and Civil Engineering, 2015, 19(Suppl1): 29 − 42. doi: 10.1080/19648189.2015.1064618
|
[30] |
MENG Q, ZHANG M, HAN L, et al. Experimental research on the influence of loading rate on the mechanical properties of limestone in a high-temperature state [J]. Bulletin of Engineering Geology & the Environment, 2019, 78(5): 3479 − 3492.
|
[31] |
翟宇星, 李亚博, 张恩华, 等. 高温花岗岩物理力学特性研究综述[J]. 山西建筑, 2020, 46(21): 39 − 42. doi: 10.3969/j.issn.1009-6825.2020.21.015
ZHAI Yuxing, LI Yabo, ZHANG Enhua, et al. A review of physical and mechanical properties of high-temperature granite [J]. Shanxi Architecture, 2020, 46(21): 39 − 42. (in Chinese) doi: 10.3969/j.issn.1009-6825.2020.21.015
|
[32] |
张帆. 三峡花岗岩力学特性与本构关系研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2007.
ZHANG Fan. Study on mechanical behavior and constitutive relations of the three gorges granite [D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2007. (in Chinese)
|
[33] |
田峥, 秦世利, 游尧, 等. 古潜山巨厚花岗岩地层综合提速与配套工艺技术研究[J]. 中国石油和化工标准与质量, 2021, 41(16): 156 − 158. doi: 10.3969/j.issn.1673-4076.2021.16.077
TIAN Zheng, QIN Shili, YOU Yao, et al. Study on comprehensive acceleration and supporting technology of huge thickness granite strata in buried hill [J]. China Petroleum and Chemical Standard and Quality, 2021, 41(16): 156 − 158. (in Chinese) doi: 10.3969/j.issn.1673-4076.2021.16.077
|
[34] |
邓运华, 彭文绪. 渤海锦州25-1S混合花岗岩潜山大油气田的发现[J]. 中国海上油气, 2009, 21(3): 145 − 150. doi: 10.3969/j.issn.1673-1506.2009.03.001
DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai sea [J]. China Offshore Oil and Gas, 2009, 21(3): 145 − 150. (in Chinese) doi: 10.3969/j.issn.1673-1506.2009.03.001
|
[35] |
田勇. 福州花岗岩区大直径地热深井主要钻井技术[J]. 福建地质, 2011, 30(2): 177 − 182. doi: 10.3969/j.issn.1001-3970.2011.02.012
TIAN Yong. The main drilling technology of the big diameter geothermal deep well in granite area, Fuzhou city [J]. Geology of Fujian, 2011, 30(2): 177 − 182. (in Chinese) doi: 10.3969/j.issn.1001-3970.2011.02.012
|
[36] |
王志刚, 胡志兴, 李宽, 等. 干热岩钻完井的挑战及技术展望[J]. 科技导报, 2019, 37(19): 58 − 65.
WANG Zhigang, HU Zhixing, LI Kuan, et al. Challenges and technical prospects of dry-hot rock drilling and completion [J]. Science & Technology Review, 2019, 37(19): 58 − 65. (in Chinese)
|
[37] |
王晓峰, 吴飚, 刘晶波, 等. 花岗岩高压状态方程实验研究[J]. 工程力学, 2020, 37(增刊): 237 − 241. doi: 10.6052/j.issn.1000-4750.2019.04.S044
WANG Xiaofeng, WU Biao, LIU Jingbo, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl): 237 − 241. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S044
|
[38] |
LI C, HU Y, MENG T, et al. Mode-I fracture toughness and mechanisms of Salt-Rock gypsum interlayers under real-time high-temperature conditions [J]. Engineering Fracture Mechanics, 2020, 240: 107357. doi: 10.1016/j.engfracmech.2020.107357
|
[39] |
LIU S, XU J Y. Fractal analysis for dynamic failure characteristics of granite induced by mechanical-thermal loading [J]. Géotechnique Letters, 2015, 5(3): 191 − 197.
|
[40] |
LIU S, XU J. Analysis on damage mechanical characteristics of marble exposed to high temperature [J]. International Journal of Damage Mechanics, 2015, 24(8): 1180 − 1193. doi: 10.1177/1056789515570507
|
[41] |
LIANG Z Y, CHEN Z Q, NI X Y. Experimental analysis on acoustic emission of the fracture marble under high temperature [J]. Advanced Materials Research, 2011, 197/198: 1430 − 1434. doi: 10.4028/www.scientific.net/AMR.197-198.1430
|
[42] |
陈浩, 李邦润, 蔡灿, 等. 深井高温岩石破岩机理及生热分析[J]. 石油机械, 2021, 49(1): 1 − 10. doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001
CHEN Hao, LI Bangrun, CAI Can, et al. Rock breaking mechanisms and heat generation analysis on high temperature rocks in deep wells [J]. China Petroleum Machinery, 2021, 49(1): 1 − 10. (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001
|
[43] |
CHEN G Q, WANG J C, JIN T B, et al. Influence of temperature on crack initiation and propagation in granite [J]. International Journal of Geomechanics, 2018, 18(8): 04018094-1 − 04018094-15.
|
[44] |
CHEN Y L , NI J , SHAO W , et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62 − 66. doi: 10.1016/j.ijrmms.2012.07.026
|
[45] |
RAMANA Y V, SARMA L P. Thermal expansion of a few Indian granitic rocks [J]. Physics of the earth and planetary interiors, 1980, 22(1): 36 − 41. doi: 10.1016/0031-9201(80)90098-9
|
[46] |
CHEN S, YANG C, WANG G. Evolution of thermal damage and permeability of Beishan granite [J]. Applied thermal engineering, 2017, 110: 1533 − 1542. doi: 10.1016/j.applthermaleng.2016.09.075
|
[47] |
CALAMAN J J, ROLSETH H C. Jet Piercing [C]. New York: Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1968.
|
[48] |
TESTER J W, HERZOG H J, CHEN Z, et al. Prospects for universal heat mining: from a Jules Verne vision to a 21st century reality [C]. Stanford, CA: Nineteenth Workshop On Geothermal Reservoir Engineering, 1994, 5: 99 − 121.
|
[49] |
NIECKELE A O, DE SILVA L F F, PLÁCIDO J C R. Numerical analysis of the turbulent flow field applied to thermal spallation drilling [C]. Charlotte, North Carolina, USA: ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004.
|
[50] |
BROWNING J, HORTON W, HARTMAN H. Recent advances in flame jet working of minerals [C]. Proceedings of the 7th Symposium on Rock Mechanics. Philadelphia, USA, Pennsylvania State University, 1965.
|
[51] |
YU P Y, PAN P Z, FENG G L, et al. Physico-mechanical properties of granite after cyclic thermal shock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 693 − 706. doi: 10.1016/j.jrmge.2020.03.001
|
[52] |
SONG X Z, LV Z H, LI G S, et al. Numerical analysis on the impact of the flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment [J]. Geothermics, 2017, 66: 39 − 49. doi: 10.1016/j.geothermics.2016.10.007
|
[53] |
ROSSI E, JAMALI S, SAAR M O, et al. Field test of a combined thermo-mechanical drilling technology. Mode I: Thermal spallation drilling [J]. Journal of Petroleum Science and Engineering, 2020, 190: 107005. doi: 10.1016/j.petrol.2020.107005
|
[54] |
SAKSALA T. Numerical study on the effect of confinement on thermal spallation drilling of hard rock [C]. Brasov, Romania: International Conference CIBv2019 Civil Engineering and Building Services, 2020.
|
[55] |
徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.
XU Xiaohe, YU Jing. Rock fragmentation [M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)
|
[56] |
DEISMAN N, MAS IVARS D, DARCEL C, et al. Empirical and numerical approaches for geo-mechanical characterization of coal seam reservoirs [J]. International Journal of Coal Geology, 2010, 82(3/4): 204 − 212. doi: 10.1016/j.coal.2009.11.003
|
[57] |
POTYONDY D O. A grain-based model for rock: Approaching the true microstructure [J]. Proceedings of rock mechanics in the Nordic Countries, 2010: 9 − 12.
|
[58] |
LISJAK A, GRASSELLI G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301 − 314. doi: 10.1016/j.jrmge.2013.12.007
|
[59] |
CUNDALL P A. The measurement and analysis of acceleration in rock slopes [D]. London: Imperial College Science and Technology,University of London, 1971.
|
[60] |
PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135 − 154. doi: 10.1007/s00603-017-1316-x
|
[61] |
HOFMANN H, BABADAGLI T, YOON J S, et al. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites [J]. Engineering Fracture Mechanics, 2015, 147: 261 − 275. doi: 10.1016/j.engfracmech.2015.09.008
|
[62] |
XIE H, LI C, HE Z, et al. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104548. doi: 10.1016/j.ijrmms.2020.104548
|
1. |
易恩兵,徐军见. 热损伤砂岩单轴压缩声发射响应及破裂演化分析. 金属矿山. 2024(07): 48-55 .
![]() | |
2. |
祝效华,刘伟吉,石昌帅,周伟. 重载冲击破岩提速机理实验. 石油学报. 2024(10): 1529-1537 .
![]() |