LIU Wei-ji, XIANG Chang, TAN Bin, ZHU Xiao-hua, HU Hai, LI Zhi-lin. THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES[J]. Engineering Mechanics, 2023, 40(10): 222-236. DOI: 10.6052/j.issn.1000-4750.2022.01.0062
Citation: LIU Wei-ji, XIANG Chang, TAN Bin, ZHU Xiao-hua, HU Hai, LI Zhi-lin. THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES[J]. Engineering Mechanics, 2023, 40(10): 222-236. DOI: 10.6052/j.issn.1000-4750.2022.01.0062

THE MECHANISM OF LOCAL HIGH-TEMPERATURE INDUCED CRACKING OF HETEROGENEOUS GRANITES

More Information
  • Received Date: January 12, 2022
  • Revised Date: June 27, 2022
  • Available Online: July 18, 2022
  • The slow drilling speed and high drilling cost in deep strata are the bottleneck problems encountered in drilling speed improvement at present stage. Traditional mechanical rock breaking is difficult to greatly improve the speed, so a new efficient rock breaking method is in urgent need. To this end, this paper analyzes local high temperature under the action of granite crushing mode through indoor test, and then establishes the local high temperature induced crack granite thermal-mechanical coupling model based on the discrete particle flow yuan PFC2D heterogeneity equivalent of granite rock mass model and considering the formation pressure, fluid column pressure effect on local high-temperature crack induced granite. The micro and macro fracture processes of heterogeneous granite are reproduced, and the relationship between temperature, pressure, and rock micro damage is summarized. The experimental results show that under the premise of non-producing molten granite, the effect of crushing granite at high temperature is very significant, and the broken debris is flaky, which is conducive to cuttings removal. There are mainly two types of cracks in granite under local high temperature, intragranular shear crack and intergranular tensile crack. The liquid column pressure inhibits the crack induced by high temperature, and the lateral pressure promotes the crack propagation. The obvious damage of granite caused by local high temperature only occurs in shallow strata and has little effect on deep strata, so it is recommended to combine with PDC bit for cutting or impact. When the granite is heated at different locations, the intragranular shear cracks only exist at the center of heating, while the intergranular tensile cracks expand in a wider range, and the crack density and crack distribution are related to grain properties. The research results are helpful to understand the mechanism of high-temperature thermal fracturing rock and provide a new idea for deep drilling speed.
  • [1]
    ROSTAMSOWLAT I, EVANS B, KWON H J. A review of the frictional contact in rock cutting with a PDC bit [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109665. doi: 10.1016/j.petrol.2021.109665
    [2]
    GUO Z, DENG R. Research on tooth wear of non-spherical single-cone bit in hard rock formation of deep well [J]. Engineering Failure Analysis, 2021, 125: 105408. doi: 10.1016/j.engfailanal.2021.105408
    [3]
    刘伟吉, 王燕飞, 郭天阳, 等. 单齿切削破碎非均质花岗岩微宏观机理研究[J]. 工程力学, 2022, 39(6): 122 − 133. doi: 10.6052/j.issn.1000-4750.2021.03.0213

    LIU Weiji, WANG Yanfei, GUO Tianyang, et al. Investigation on the rock cutting mechanism of heterogeneous granite using a grain-based modeling approach [J]. Engineering Mechanics, 2022, 39(6): 122 − 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0213
    [4]
    刘伟吉, 阳飞龙, 董洪铎, 等. 异形PDC齿混合切削破碎花岗岩特性研究[J]. 工程力学, 2023, 40(3): 245 − 256. doi: 10.6052/j.issn.1000-4750.2021.10.0761

    LIU Weiji, YANG Feilong, DONG Hongduo, et al. Investigate on the mixed-cutting of specially-shaped pdc cutters in granite [J]. Engineering Mechanics, 2023, 40(3): 245 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.10.0761
    [5]
    李玮, 何选蓬, 闫铁, 等. 近钻头扭转冲击器破岩机理及应用[J]. 石油钻采工艺, 2014, 36(5): 1 − 4. doi: 10.13639/j.odpt.2014.05.001

    LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter [J]. Oil Drilling & Production Technology, 2014, 36(5): 1 − 4. (in Chinese) doi: 10.13639/j.odpt.2014.05.001
    [6]
    卢玲玲, 何东升, 张伟东, 等. 扭转冲击器研究及应用[J]. 石油矿场机械, 2015, 44(6): 82 − 85.

    LU Lingling, HE Dongsheng, ZHANG Weidong, et al. Research and Application Prospect of Torsional Impact Hammer [J]. Oil Field Equipment, 2015, 44(6): 82 − 85. (in Chinese)
    [7]
    刘书斌, 倪红坚, 张恒, 等. 多维冲击器钻井提速技术及应用[J]. 石油机械, 2020, 48(10): 44 − 50.

    LIU Shubin, NI Hongjian, ZHANG Heng, et al. Multi-dimensional impactor and its application [J]. China Petroleum Machinery, 2020, 48(10): 44 − 50. (in Chinese)
    [8]
    WANG W, LIU G, LI J, et al. Numerical simulation study on rock-breaking process and mechanism of compound impact drilling [J]. Energy Reports, 2021, 7: 3137 − 3148. doi: 10.1016/j.egyr.2021.05.040
    [9]
    菅志军, 张文华, 刘国辉, 等. 石油钻井用液动冲击器研究现状及发展趋势[J]. 石油机械, 2001, 29(11): 43 − 46. doi: 10.3969/j.issn.1001-4578.2001.11.017

    JIAN Zhijun, ZHANG Wenhua, LIU Guohui, et al. Current status and developing trend of research on hydraulic hole hammer for oil drilling [J]. China Petroleum Machinery, 2001, 29(11): 43 − 46. (in Chinese) doi: 10.3969/j.issn.1001-4578.2001.11.017
    [10]
    王四一, 李泉新, 刘建林, 等. 冲击螺杆马达研制[J]. 煤田地质与勘探, 2019, 47(5): 225 − 231. doi: 10.3969/j.issn.1001-1986.2019.05.032

    WANG Siyi, LI Quanxin, LIU Jianlin, et al. Development of impact screw motor [J]. Coal Geology & Exploration, 2019, 47(5): 225 − 231. (in Chinese) doi: 10.3969/j.issn.1001-1986.2019.05.032
    [11]
    刘伟吉, 阳飞龙, 祝效华, 等. 异形PDC齿切削破岩提速机理研究[J]. 中国机械工程, 2021: 1 − 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html

    LIU Wejii, YANG Feilong, ZHU Xiaohua, et al. Research on the Mechanism of Rock Breaking and Speed Increase in Cutting with Abnormal PDC Cutter[J]. CHINA MECHANICAL ENGINEERING, 2021: 1 − 11. http://kns.cnki.net/kcms/detail/42.1294.TH.20211103.1843.014.html
    [12]
    吴泽兵, 吕澜涛, 王勇勇, 等. 牙轮—PDC混合钻头的破岩特性及温度场变化[J]. 天然气工业, 2020, 40(3): 99 − 106.

    WU Zebing, LYU Lantao, WANG Yongyong, et al. Rock-breaking characteristics and temperature field change of cone-PDO hybrid bits [J]. Natural Gas Industry, 2020, 40(3): 99 − 106. (in Chinese)
    [13]
    RAUENZAHN R M, TESTER J W. Rock failure mechanisms of flame-jet thermal spallation drilling—theory and experimental testing [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(5): 381 − 399.
    [14]
    ZHU X, LUO Y, LIU W. On the rock-breaking mechanism of plasma channel drilling technology [J]. Journal of Petroleum Science and Engineering, 2020, 194: 107356. doi: 10.1016/j.petrol.2020.107356
    [15]
    Ferri, Hassani, Pejman, et al. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. 岩石力学与岩土工程学报: 英文版, 2016(1): 15. doi: 10.1016/j.jrmge.2015.10.004

    HASSANI F, PEJMAN M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1 − 15. doi: 10.1016/j.jrmge.2015.10.004
    [16]
    RUI F, ZHAO G F. Experimental and numerical investigation of laser-induced rock damage and the implications for laser-assisted rock cutting [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139(7): 104653.
    [17]
    LYU Z, SONG X, LI G. An analytical method to determine rock spallation temperature and degree of heterogeneity in thermal spallation drilling for geothermal energy [J]. Geothermics, 2019, 77: 99 − 105.
    [18]
    WILLIAMS R E, POTTER R M, MISKA S. Experiments in thermal spallation of various rocks [J]. Journal of Energy Resources Technology, 1996, 118(1): 2 − 6. doi: 10.1115/1.2792690
    [19]
    PRESTON F W, WHITE H E. Observations on spalling [J]. Journal of the American Ceramic Society, 1934, 17: 137 − 144. doi: 10.1111/j.1151-2916.1934.tb19296.x
    [20]
    PANEL M L. The future of geothermal energy. Impact of enhanced geothermal systems [EGS] on the United States in the 21st century [J]. Geothermics, 2006, 17(5/6): 881 − 882.
    [21]
    WAN Z J, ZHAO Y S, YUAN Z, et al. Research status quo and prospection of mechanical characteristics of rock under high temperature and high pressure [J]. Procedia Earth and Planetary Science, 2009, 1(1): 565 − 570. doi: 10.1016/j.proeps.2009.09.090
    [22]
    GARITTE B, GENS A, VAUNAT J. Thermal conductivity of argillaceous rocks: determination methodology using in situ heating tests [J]. Rock Mechanics & Rock Engineering, 2014, 47(1): 111 − 129.
    [23]
    GUO T, TANG S, LIU S, et al. Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress [J]. Engineering Fracture Mechanics, 2020, 240: 107350. doi: 10.1016/j.engfracmech.2020.107350
    [24]
    DAI X, HUANG Z, WU X, et al. Failure analysis of high-temperature granite under the joint action of cutting and liquid nitrogen jet impingement [J]. Rock Mechanics and Rock Engineering, 2021, 54: 6249 − 6264. doi: 10.1007/s00603-021-02600-1
    [25]
    姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915

    YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915
    [26]
    张志镇, 高峰, 高亚楠, 等. 高温影响下花岗岩孔径分布的分形结构及模型[J]. 岩石力学与工程学报, 2016, 35(12): 2426 − 2438. doi: 10.13722/j.cnki.jrme.2016.0798

    ZHANG Zhizhen, GAO Feng, GAO Yanan, et al. Fractal structure and model of pore size distribution of granite under high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2426 − 2438. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0798
    [27]
    夏晨, 戚承志, 利学, 等. 裂纹面动摩擦作用对脆性材料动力破坏的影响[J]. 工程力学, 2022, 39(12): 50 − 59. doi: 10.6052/j.issn.1000-4750.2021.07.0552

    XIA Chen, QI Chengzhi, LI Xue, et al. Effect of dynamic friction on crack surface on dynamic failure of brittle materials [J]. Engineering Mechanics, 2022, 39(12): 50 − 59. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0552
    [28]
    韩智铭, 刘庆宽, 王雪, 等. 岩体多裂纹扩展演化过程数值流形方法研究[J]. 工程力学, 2021, 38(增刊): 7 − 13. doi: 10.6052/j.issn.1000-4750.2020.05.S003

    HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass [J]. Engineering Mechanics, 2021, 38(Suppl): 7 − 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S003
    [29]
    WANG C, CHEN L, LIU J, et al. Experimental characterization of thermo-mechanical coupling properties of Beishan granite [J]. European Journal of Environmental and Civil Engineering, 2015, 19(Suppl1): 29 − 42. doi: 10.1080/19648189.2015.1064618
    [30]
    MENG Q, ZHANG M, HAN L, et al. Experimental research on the influence of loading rate on the mechanical properties of limestone in a high-temperature state [J]. Bulletin of Engineering Geology & the Environment, 2019, 78(5): 3479 − 3492.
    [31]
    翟宇星, 李亚博, 张恩华, 等. 高温花岗岩物理力学特性研究综述[J]. 山西建筑, 2020, 46(21): 39 − 42. doi: 10.3969/j.issn.1009-6825.2020.21.015

    ZHAI Yuxing, LI Yabo, ZHANG Enhua, et al. A review of physical and mechanical properties of high-temperature granite [J]. Shanxi Architecture, 2020, 46(21): 39 − 42. (in Chinese) doi: 10.3969/j.issn.1009-6825.2020.21.015
    [32]
    张帆. 三峡花岗岩力学特性与本构关系研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2007.

    ZHANG Fan. Study on mechanical behavior and constitutive relations of the three gorges granite [D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2007. (in Chinese)
    [33]
    田峥, 秦世利, 游尧, 等. 古潜山巨厚花岗岩地层综合提速与配套工艺技术研究[J]. 中国石油和化工标准与质量, 2021, 41(16): 156 − 158. doi: 10.3969/j.issn.1673-4076.2021.16.077

    TIAN Zheng, QIN Shili, YOU Yao, et al. Study on comprehensive acceleration and supporting technology of huge thickness granite strata in buried hill [J]. China Petroleum and Chemical Standard and Quality, 2021, 41(16): 156 − 158. (in Chinese) doi: 10.3969/j.issn.1673-4076.2021.16.077
    [34]
    邓运华, 彭文绪. 渤海锦州25-1S混合花岗岩潜山大油气田的发现[J]. 中国海上油气, 2009, 21(3): 145 − 150. doi: 10.3969/j.issn.1673-1506.2009.03.001

    DENG Yunhua, PENG Wenxu. Discovering large buried-hill oil and gas fields of migmatitic granite on Jinzhou 25-1S in Bohai sea [J]. China Offshore Oil and Gas, 2009, 21(3): 145 − 150. (in Chinese) doi: 10.3969/j.issn.1673-1506.2009.03.001
    [35]
    田勇. 福州花岗岩区大直径地热深井主要钻井技术[J]. 福建地质, 2011, 30(2): 177 − 182. doi: 10.3969/j.issn.1001-3970.2011.02.012

    TIAN Yong. The main drilling technology of the big diameter geothermal deep well in granite area, Fuzhou city [J]. Geology of Fujian, 2011, 30(2): 177 − 182. (in Chinese) doi: 10.3969/j.issn.1001-3970.2011.02.012
    [36]
    王志刚, 胡志兴, 李宽, 等. 干热岩钻完井的挑战及技术展望[J]. 科技导报, 2019, 37(19): 58 − 65.

    WANG Zhigang, HU Zhixing, LI Kuan, et al. Challenges and technical prospects of dry-hot rock drilling and completion [J]. Science & Technology Review, 2019, 37(19): 58 − 65. (in Chinese)
    [37]
    王晓峰, 吴飚, 刘晶波, 等. 花岗岩高压状态方程实验研究[J]. 工程力学, 2020, 37(增刊): 237 − 241. doi: 10.6052/j.issn.1000-4750.2019.04.S044

    WANG Xiaofeng, WU Biao, LIU Jingbo, et al. Experimental research on the equation of state of granite at high pressure [J]. Engineering Mechanics, 2020, 37(Suppl): 237 − 241. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S044
    [38]
    LI C, HU Y, MENG T, et al. Mode-I fracture toughness and mechanisms of Salt-Rock gypsum interlayers under real-time high-temperature conditions [J]. Engineering Fracture Mechanics, 2020, 240: 107357. doi: 10.1016/j.engfracmech.2020.107357
    [39]
    LIU S, XU J Y. Fractal analysis for dynamic failure characteristics of granite induced by mechanical-thermal loading [J]. Géotechnique Letters, 2015, 5(3): 191 − 197.
    [40]
    LIU S, XU J. Analysis on damage mechanical characteristics of marble exposed to high temperature [J]. International Journal of Damage Mechanics, 2015, 24(8): 1180 − 1193. doi: 10.1177/1056789515570507
    [41]
    LIANG Z Y, CHEN Z Q, NI X Y. Experimental analysis on acoustic emission of the fracture marble under high temperature [J]. Advanced Materials Research, 2011, 197/198: 1430 − 1434. doi: 10.4028/www.scientific.net/AMR.197-198.1430
    [42]
    陈浩, 李邦润, 蔡灿, 等. 深井高温岩石破岩机理及生热分析[J]. 石油机械, 2021, 49(1): 1 − 10. doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001

    CHEN Hao, LI Bangrun, CAI Can, et al. Rock breaking mechanisms and heat generation analysis on high temperature rocks in deep wells [J]. China Petroleum Machinery, 2021, 49(1): 1 − 10. (in Chinese) doi: 10.16082/j.cnki.issn.1001-4578.2021.01.001
    [43]
    CHEN G Q, WANG J C, JIN T B, et al. Influence of temperature on crack initiation and propagation in granite [J]. International Journal of Geomechanics, 2018, 18(8): 04018094-1 − 04018094-15.
    [44]
    CHEN Y L , NI J , SHAO W , et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 56: 62 − 66. doi: 10.1016/j.ijrmms.2012.07.026
    [45]
    RAMANA Y V, SARMA L P. Thermal expansion of a few Indian granitic rocks [J]. Physics of the earth and planetary interiors, 1980, 22(1): 36 − 41. doi: 10.1016/0031-9201(80)90098-9
    [46]
    CHEN S, YANG C, WANG G. Evolution of thermal damage and permeability of Beishan granite [J]. Applied thermal engineering, 2017, 110: 1533 − 1542. doi: 10.1016/j.applthermaleng.2016.09.075
    [47]
    CALAMAN J J, ROLSETH H C. Jet Piercing [C]. New York: Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1968.
    [48]
    TESTER J W, HERZOG H J, CHEN Z, et al. Prospects for universal heat mining: from a Jules Verne vision to a 21st century reality [C]. Stanford, CA: Nineteenth Workshop On Geothermal Reservoir Engineering, 1994, 5: 99 − 121.
    [49]
    NIECKELE A O, DE SILVA L F F, PLÁCIDO J C R. Numerical analysis of the turbulent flow field applied to thermal spallation drilling [C]. Charlotte, North Carolina, USA: ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004.
    [50]
    BROWNING J, HORTON W, HARTMAN H. Recent advances in flame jet working of minerals [C]. Proceedings of the 7th Symposium on Rock Mechanics. Philadelphia, USA, Pennsylvania State University, 1965.
    [51]
    YU P Y, PAN P Z, FENG G L, et al. Physico-mechanical properties of granite after cyclic thermal shock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(4): 693 − 706. doi: 10.1016/j.jrmge.2020.03.001
    [52]
    SONG X Z, LV Z H, LI G S, et al. Numerical analysis on the impact of the flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment [J]. Geothermics, 2017, 66: 39 − 49. doi: 10.1016/j.geothermics.2016.10.007
    [53]
    ROSSI E, JAMALI S, SAAR M O, et al. Field test of a combined thermo-mechanical drilling technology. Mode I: Thermal spallation drilling [J]. Journal of Petroleum Science and Engineering, 2020, 190: 107005. doi: 10.1016/j.petrol.2020.107005
    [54]
    SAKSALA T. Numerical study on the effect of confinement on thermal spallation drilling of hard rock [C]. Brasov, Romania: International Conference CIBv2019 Civil Engineering and Building Services, 2020.
    [55]
    徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

    XU Xiaohe, YU Jing. Rock fragmentation [M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese)
    [56]
    DEISMAN N, MAS IVARS D, DARCEL C, et al. Empirical and numerical approaches for geo-mechanical characterization of coal seam reservoirs [J]. International Journal of Coal Geology, 2010, 82(3/4): 204 − 212. doi: 10.1016/j.coal.2009.11.003
    [57]
    POTYONDY D O. A grain-based model for rock: Approaching the true microstructure [J]. Proceedings of rock mechanics in the Nordic Countries, 2010: 9 − 12.
    [58]
    LISJAK A, GRASSELLI G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301 − 314. doi: 10.1016/j.jrmge.2013.12.007
    [59]
    CUNDALL P A. The measurement and analysis of acceleration in rock slopes [D]. London: Imperial College Science and Technology,University of London, 1971.
    [60]
    PENG J, WONG L N Y, TEH C I, et al. Modeling micro-cracking behavior of Bukit Timah granite using grain-based model [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 135 − 154. doi: 10.1007/s00603-017-1316-x
    [61]
    HOFMANN H, BABADAGLI T, YOON J S, et al. A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites [J]. Engineering Fracture Mechanics, 2015, 147: 261 − 275. doi: 10.1016/j.engfracmech.2015.09.008
    [62]
    XIE H, LI C, HE Z, et al. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104548. doi: 10.1016/j.ijrmms.2020.104548
  • Cited by

    Periodical cited type(2)

    1. 易恩兵,徐军见. 热损伤砂岩单轴压缩声发射响应及破裂演化分析. 金属矿山. 2024(07): 48-55 .
    2. 祝效华,刘伟吉,石昌帅,周伟. 重载冲击破岩提速机理实验. 石油学报. 2024(10): 1529-1537 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (509) PDF downloads (57) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return