Citation: | WU Shuang-shuang, JIN Ying-li, YAN Ming, GU Xi-ping. RESEARCH ON THE MECHANISM OF REBOUND COLLISION SHOCK AMPLIFIER[J]. Engineering Mechanics, 2023, 40(8): 235-242. DOI: 10.6052/j.issn.1000-4750.2021.12.0957 |
[1] |
GAD-EL-HAK M. The MEMS handbook [M]. New York: CRC Press, 2001.
|
[2] |
SRIKAR V T, SENTURIA S D. The reliability of micro electro mechanical systems (MEMS) in shock environments [J]. Journal of Micro electro mechanical Systems, 2002, 11(3): 206 − 214.
|
[3] |
ZHANG S S. Survey on high-G testing methodology [J/OL]. http://www.empf.org/empfasis/june05/g0605.htm, 2006-08-10.
|
[4] |
HART J B, HERRMANN R B. Energy transfer in one-dimensional collisions of many objects [J]. American Journal of Physics, 1968, 36(1): 46 − 48. doi: 10.1119/1.1974408
|
[5] |
HARTER W G. Velocity amplification in collision experiments involving superballs [J]. American Journal of Physics, 1971, 39(6): 656 − 663. doi: 10.1119/1.1986253
|
[6] |
RODGERS B, GOYA S, KELLY G, et al. The dynamics of multiple pair-wise collisions in a chain for designing optimal shock amplifiers [J]. Shock and Vibration, 2009, 16(1): 99 − 116. doi: 10.1155/2009/989146
|
[7] |
O’DONOGHUE D, FRIZZELL R, KELLY G, et al. The influence of mass configurations on velocity amplified vibrational energy harvesters [J]. Smart Materials and Structures, 2016, 25(5): 055012. doi: 10.1088/0964-1726/25/5/055012
|
[8] |
DUAN Z, ZHAO Y, LIANG J. A simply constructed but efficacious shock tester for high-g level shock simulation [J]. Review of Scientific Instruments, 2012, 83(7): 075115. doi: 10.1063/1.4737888
|
[9] |
KELLY G, PUNCH J, GOYAL S, et al. Shock pulse shaping gin a small-form factor velocity amplifier [J]. Shock and Vibration, 2010, 17(6): 787 − 802. doi: 10.1155/2010/478323
|
[10] |
ANDY Z. High acceleration board level reliability drop test using dual mass shock amplifier [C]// Electronic Componen- ts & Technology Conference. Orlando, FL, USA, IEEE, 2014: 1441 − 1448.
|
[11] |
BERGLUND J W. A modified dual-mass amplifier for high-strain-rate testing of SIFCON in uniaxial compression [J]. Experimental Mechanics, 1998, 28(3): 281 − 287.
|
[12] |
DOUGLAS S T. High accelerations produced through secon- dary shock and its effect on reliability of printed wiring assemblies [D]. Maryland: University of Maryland College Park, 2010.
|
[13] |
DOUGLAS S T, AL-BASSYIOUNI M, DASGUPTA A, et al. Simulation of secondary contact to generate very high accelerations [J]. Journal of Electronic Packaging, 2015, 137(3): 031011. doi: 10.1115/1.4030685
|
[14] |
LALL P, PANDURANGAN A R R, DORNALA V K R, et al. Effect of drop angle variation restraint mechanisms on surface mount electronics under high g shock [C]// International Electronic Packaging Technical Conference and Exhibition American Society of Mechanical Engineers. Anaheim, CA, USA, Electronic and Photonic Packaging Division, 2019.
|
[15] |
LALL P, PANDURANGAN A R R, DORNALA K, et al. Effect of shock angle on solder-joint reliability of potted assemblies under high-G shock [C]// 2020 19th IEEE Intersociety Con- ference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Walt Disney World Swan Hotel, IEEE, 2020: 1328 − 1339.
|
[16] |
叶昆, 李黎. 改进的Kelvin碰撞分析模型[J]. 工程力学, 2009, 26(增刊 2): 245 − 248.
YE Kun, LI Li. Modified kelvin pounding analytical model [J]. Engineering Mechanics, 2009, 26(Suppl 2): 245 − 248. (in Chinese)
|
[17] |
闫维明, 王宝顺, 何浩祥. 并联式单向单颗粒阻尼器力学模型及优化分析[J]. 工程力学, 2020, 37(7): 138 − 150. doi: 10.6052/j.issn.1000-4750.2019.08.0487
YAN Weiming, WANG Baoshun, HE Haoxiang. Mechanical model and optimal analysis of parallel single-dimension single particle damper [J]. Engineering Mechanics, 2020, 37(7): 138 − 150. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0487
|
[18] |
黄绪宏, 许维炳, 王瑾, 等. 考虑惯容的颗粒阻尼器等效力学模型及其受控结构稳态解研究[J]. 工程力学, 2021, 38(4): 136 − 149. doi: 10.6052/j.issn.1000-4750.2020.06.0359
HUANG Xuhong, XU Weibing, WANG Jin, et al. Equivalent model of multi-particle damper considering inertia and steady-state solution of controlled structure [J]. Engineering Mechanics, 2021, 38(4): 136 − 149. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0359
|
[19] |
王宝顺, 何浩祥, 闫维明. 质量调谐-颗粒阻尼器复合减振体系的力学解析及优化分析[J]. 工程力学, 2021, 38(6): 191 − 208. doi: 10.6052/j.issn.1000-4750.2020.07.0463
WANG Baoshun, HE Haoxiang, YAN Weiming. Analytical model and optimization analysis of combined damping system with TMD and particle damper [J]. Engineering Mechanics, 2021, 38(6): 191 − 208. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0463
|
[20] |
LEE O S, KIM K J. Dynamic compressive deformation behavior of rubber materials [J]. Journal of Materials Science Letters, 2003, 22(16): 1157 − 1160. doi: 10.1023/A:1025183229242
|
1. |
马威,张健,姜鑫,吴文章. 三自由度凿岩机-岩石模型的分岔分析和实验. 工程力学. 2025(04): 226-233 .
![]() |