GENG Ling-bo, HU Zhi-qiang, LIN Yang, YI Rui-wen, WANG Chao. THE EFFECT OF SCALE ON THE THRUST CHARACTERISTICS OF UNDERWATER SYNTHETIC JET[J]. Engineering Mechanics, 2017, 34(12): 219-228. DOI: 10.6052/j.issn.1000-4750.2016.07.0547
Citation: GENG Ling-bo, HU Zhi-qiang, LIN Yang, YI Rui-wen, WANG Chao. THE EFFECT OF SCALE ON THE THRUST CHARACTERISTICS OF UNDERWATER SYNTHETIC JET[J]. Engineering Mechanics, 2017, 34(12): 219-228. DOI: 10.6052/j.issn.1000-4750.2016.07.0547

THE EFFECT OF SCALE ON THE THRUST CHARACTERISTICS OF UNDERWATER SYNTHETIC JET

More Information
  • Received Date: July 18, 2016
  • Revised Date: September 27, 2017
  • The thrust characteristics of underwater synthetic jet under different scales are numerically studied. The commercial code fluent is used for the numerical simulation. The numerical results are validated using experimental data. The numerical results show that when the scale is 0.1 mm, the variation of the thrust is close to that of the velocity. The average thrust and the propulsion efficiency is low on this scale. When the scale increases to 1 mm, the thrust becomes asymmetrical and both the average thrust and the propulsion efficiency are increased. A mathematical model of underwater synthetic jet is established. The model decomposes the thrust of underwater synthetic jet into three parts:the thrust induced by mass change, the thrust induced by fluid acceleration and the thrust caused by the pressure of the fluid outside the actuator. The vortical structures and the velocity distribution under different scales are given. The analysis of the flow field reveals that the viscous effect differs significantly for different scales. When the viscous effect is strong, the fluid acceleration and the pressure effect of the outside fluid is very weak. As a result, the efficiency of the actuator is low. With the increase of the size, the viscous effect is greatly reduced. The fluid acceleration and the pressure effect of the outside fluid increase, resulting in a larger efficiency.
  • [1]
    Krueger P S. The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion[D]. Pasadena:California Institute of Technology, 2001.
    [2]
    Moslemi A A, Krueger P S. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle[J]. Bioinspiration & Biomimetics, 2010, 5(3):003-036.
    [3]
    Paul S Krueger, M Gharib. Thrust augmentation and vortex ring evolution in a fully pulsed jet[J]. AIAA Journal, 2006, 4(43):792-801
    [4]
    Robert W Whittlesey, John O Dabiri. Optimal vortex formation in a self-propelled vehicle[J]. Fluid Mech, 2013, 7(1):78-104.
    [5]
    Lydia A Ruizi, Robert W Whittlesey, John O Dabiri. Vortex enhanced propulsion[J]. Fluid Mech, 2011, 3(5):5-32.
    [6]
    Krueger P S, Gharib M. The significance of vortex ring formation to the impulse and thrust of a starting jet[J]. Physics of Fluids (1994-present), 2003, 15(5):1271-1281.
    [7]
    马杰, 陈志华, 孙晓晖, 等. 射流控制条件下超声速尾翼弹的气动特性[J]. 工程力学, 2016, 33(9):250-256. Ma Jie, Chen Zhihua, Sun Xiaohui, et al. The aerodynamic characteristics of a supersonic finned projectile under the condition of jet control[J]. Engineering Mechanics, 2016, 33(9):250-256. (in Chinese)
    [8]
    刘汝兵, 牛中国, 王萌萌, 等. 等离子体射流控制机翼气动力矩的实验研究[J]. 工程力学, 2016, 33(3):232-238. Liu Rubing, Niu Zhongguo, Wang Mengmeng, et al. Aerodynamic moments control of wing model using plasma jet[J]. Engineering Mechanics, 2016, 33(3):232-238. (in Chinese)
    [9]
    Mohseni K. Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles[J]. Ocean Engineering, 2006, 33(16):2209-2223.
    [10]
    AnnMarie Polsenberg Thomas, Michele Milano, Maxwell Grazier G'Sell. Synthetic jet propulsion for small underwater vehicles[C]. Barcelona, Spain:Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005:181-187.
    [11]
    Krieg M, Pitty A, Salehi M. Optimal thrust characteristics of a synthetic jet actuator for application in low speed maneuvering of underwater vehicles[C]. Oceans, Proceedings of MTS/IEEE. IEEE, 2005:2342-2347.
    [12]
    Krieg M, Mohseni K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion[J]. Robotics, IEEE Transactions on, 2005, 26(3):542-554.
    [13]
    Michael Krieg, Kamran Mohseni. Thrust characterization of a bio-inspired vortex ring thruster for locomotion of underwater robots[J]. IEEE Journal Of Oceanic Engineering, 2008, 33(2):123-132.
    [14]
    Krieg M, Coley C, Hart C. Synthetic Jet Thrust optimization for application in underwater vehicles[C]. Proc. 14th Int. Symp. on Unmanned Untethered Submersible Technology (UUST) (Durham, NH, August, 2005:21-24.
    [15]
    Whittlesey R W. Dynamics and scaling of self-excited passive vortex generators for underwater propulsion[D]. California Institute of Technology, Pasadena, California, 2013.
    [16]
    Polsenberg Thomas A M. Exploration into the feasibility of underwater synthetic jet propulsion[D]. California Institute of Technology, Pasadena, California, 2011.
    [17]
    Giorgio Serchi F, Arienti A, Laschi C. Biomimetic vortex propulsion:toward the new paradigm of soft unmanned underwater vehicles[J]. Mechatronics, IEEE/ASME Transactions on, 2013, 18(2):484-493.
    [18]
    Krueger P S. An over-pressure correction to the slug model for vortex ring circulation[J]. Journal of Fluid Mechanics, 2005, 545:427-443.
    [19]
    Michael Krieg, Kamran Mohseni. Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity[J]. Journal of Fluid Mechanics, 2013, 7(19):488-526.
    [20]
    Anderson E J, DeMont M E, 2000. The mechanics of locomotion in the squid Loligo pealei:locomotory function and unsteady hydrodynamics of the jet and intramantle pressure[J]. Journal of Experimental Biology, 203(18):2851-2863.
    [21]
    耿令波, 胡志强, 林扬, 等. 不对称激励函数对水环境下合成射流激励器推力影响及其机理研究[J]. 机械工程学报, 2017, 53(7):13-22. Geng Lingbo, Hu Zhiqiang, Lin Yang, et al. Thrust characteristics of synthetic jet actuator underwater with asymmetric forcing profile and its working mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7):13-22. (in Chinese)
    [22]
    Kamran Mohseni, Morteza Gharib. A model for universal time scale of vortex ring formation[J]. Physics of Fluids, 1998, 10(10):2436-2438.
    [23]
    Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 36(10):121-140.
    [24]
    Julien Dandois, Eric Garnier, Andpierre Sagaut. Numerical simulation of active separation control by a synthetic jet[J]. Journal of Fluid Mechanics, 2007, 5(7):25-58.
    [25]
    Donald P Rizzetta, Miguel R Visbal, Michael J Stanek. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 2007, 37(8):919-927.
    [26]
    Shuo Li. A Numerical Study of Micro Synthetic Jet and Its Applications in Thermal Management[D]. Georgia Institute of Technology, Georgia, Atlanta, 2005.
    [27]
    Ann Marie Thomas, John P Abraham. Numerical simulation of circular synthetic jets with asymmetric forcing profiles[J]. The Open Mechanical Engineering Journal, 2013, 4(1):1-7.
    [28]
    Abhay Kumar, Panda P K, Vivek Kumar. Combined experimental and numerical study of synthetic jet in quiescent flow[C]. Madras, Chennai, India:Proceedings of the 37th International & 4th National Conference on Fluid Mechanics and Fluid Power, 2010:1-11.
    [29]
    Menter, F. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):269-289.
    [30]
    Yen J, Ahmed N A. Parametric study of dynamic stall flow field with synthetic jet actuation[J]. ASME. Journal of Fluid Engineering, 2012, 134(7):106-115.
    [31]
    Lü Y, Zhang J, Shan Y, et al. Numerical investigation for effects of actuator parameters and excitation frequencies on synthetic jet fluidic characteristics[J]. Sensors and Actuators A:Physical, 2014, 2(19):100-111.
  • Cited by

    Periodical cited type(2)

    1. 陈誉,柯晓宇,周如瑞,万晓杰,郭锦涛,李晓晖. 水下球形机器人环形射流推进系统水力特性数值模拟. 南京工程学院学报(自然科学版). 2024(03): 1-10 .
    2. 梁晨,王亚彪,邓军,孙先帅,周海滨,何震. 油浸式变压器内检机器人喷射推进器设计及叶轮修型. 机械工程与自动化. 2021(02): 22-24+28 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (260) PDF downloads (25) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return