Citation: | GENG Ling-bo, HU Zhi-qiang, LIN Yang, YI Rui-wen, WANG Chao. THE EFFECT OF SCALE ON THE THRUST CHARACTERISTICS OF UNDERWATER SYNTHETIC JET[J]. Engineering Mechanics, 2017, 34(12): 219-228. DOI: 10.6052/j.issn.1000-4750.2016.07.0547 |
[1] |
Krueger P S. The significance of vortex ring formation and nozzle exit over-pressure to pulsatile jet propulsion[D]. Pasadena:California Institute of Technology, 2001.
|
[2] |
Moslemi A A, Krueger P S. Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle[J]. Bioinspiration & Biomimetics, 2010, 5(3):003-036.
|
[3] |
Paul S Krueger, M Gharib. Thrust augmentation and vortex ring evolution in a fully pulsed jet[J]. AIAA Journal, 2006, 4(43):792-801
|
[4] |
Robert W Whittlesey, John O Dabiri. Optimal vortex formation in a self-propelled vehicle[J]. Fluid Mech, 2013, 7(1):78-104.
|
[5] |
Lydia A Ruizi, Robert W Whittlesey, John O Dabiri. Vortex enhanced propulsion[J]. Fluid Mech, 2011, 3(5):5-32.
|
[6] |
Krueger P S, Gharib M. The significance of vortex ring formation to the impulse and thrust of a starting jet[J]. Physics of Fluids (1994-present), 2003, 15(5):1271-1281.
|
[7] |
马杰, 陈志华, 孙晓晖, 等. 射流控制条件下超声速尾翼弹的气动特性[J]. 工程力学, 2016, 33(9):250-256. Ma Jie, Chen Zhihua, Sun Xiaohui, et al. The aerodynamic characteristics of a supersonic finned projectile under the condition of jet control[J]. Engineering Mechanics, 2016, 33(9):250-256. (in Chinese)
|
[8] |
刘汝兵, 牛中国, 王萌萌, 等. 等离子体射流控制机翼气动力矩的实验研究[J]. 工程力学, 2016, 33(3):232-238. Liu Rubing, Niu Zhongguo, Wang Mengmeng, et al. Aerodynamic moments control of wing model using plasma jet[J]. Engineering Mechanics, 2016, 33(3):232-238. (in Chinese)
|
[9] |
Mohseni K. Pulsatile vortex generators for low-speed maneuvering of small underwater vehicles[J]. Ocean Engineering, 2006, 33(16):2209-2223.
|
[10] |
AnnMarie Polsenberg Thomas, Michele Milano, Maxwell Grazier G'Sell. Synthetic jet propulsion for small underwater vehicles[C]. Barcelona, Spain:Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005:181-187.
|
[11] |
Krieg M, Pitty A, Salehi M. Optimal thrust characteristics of a synthetic jet actuator for application in low speed maneuvering of underwater vehicles[C]. Oceans, Proceedings of MTS/IEEE. IEEE, 2005:2342-2347.
|
[12] |
Krieg M, Mohseni K. Dynamic modeling and control of biologically inspired vortex ring thrusters for underwater robot locomotion[J]. Robotics, IEEE Transactions on, 2005, 26(3):542-554.
|
[13] |
Michael Krieg, Kamran Mohseni. Thrust characterization of a bio-inspired vortex ring thruster for locomotion of underwater robots[J]. IEEE Journal Of Oceanic Engineering, 2008, 33(2):123-132.
|
[14] |
Krieg M, Coley C, Hart C. Synthetic Jet Thrust optimization for application in underwater vehicles[C]. Proc. 14th Int. Symp. on Unmanned Untethered Submersible Technology (UUST) (Durham, NH, August, 2005:21-24.
|
[15] |
Whittlesey R W. Dynamics and scaling of self-excited passive vortex generators for underwater propulsion[D]. California Institute of Technology, Pasadena, California, 2013.
|
[16] |
Polsenberg Thomas A M. Exploration into the feasibility of underwater synthetic jet propulsion[D]. California Institute of Technology, Pasadena, California, 2011.
|
[17] |
Giorgio Serchi F, Arienti A, Laschi C. Biomimetic vortex propulsion:toward the new paradigm of soft unmanned underwater vehicles[J]. Mechatronics, IEEE/ASME Transactions on, 2013, 18(2):484-493.
|
[18] |
Krueger P S. An over-pressure correction to the slug model for vortex ring circulation[J]. Journal of Fluid Mechanics, 2005, 545:427-443.
|
[19] |
Michael Krieg, Kamran Mohseni. Modelling circulation, impulse and kinetic energy of starting jets with non-zero radial velocity[J]. Journal of Fluid Mechanics, 2013, 7(19):488-526.
|
[20] |
Anderson E J, DeMont M E, 2000. The mechanics of locomotion in the squid Loligo pealei:locomotory function and unsteady hydrodynamics of the jet and intramantle pressure[J]. Journal of Experimental Biology, 203(18):2851-2863.
|
[21] |
耿令波, 胡志强, 林扬, 等. 不对称激励函数对水环境下合成射流激励器推力影响及其机理研究[J]. 机械工程学报, 2017, 53(7):13-22. Geng Lingbo, Hu Zhiqiang, Lin Yang, et al. Thrust characteristics of synthetic jet actuator underwater with asymmetric forcing profile and its working mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7):13-22. (in Chinese)
|
[22] |
Kamran Mohseni, Morteza Gharib. A model for universal time scale of vortex ring formation[J]. Physics of Fluids, 1998, 10(10):2436-2438.
|
[23] |
Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation[J]. Journal of Fluid Mechanics, 1998, 36(10):121-140.
|
[24] |
Julien Dandois, Eric Garnier, Andpierre Sagaut. Numerical simulation of active separation control by a synthetic jet[J]. Journal of Fluid Mechanics, 2007, 5(7):25-58.
|
[25] |
Donald P Rizzetta, Miguel R Visbal, Michael J Stanek. Numerical investigation of synthetic-jet flowfields[J]. AIAA Journal, 2007, 37(8):919-927.
|
[26] |
Shuo Li. A Numerical Study of Micro Synthetic Jet and Its Applications in Thermal Management[D]. Georgia Institute of Technology, Georgia, Atlanta, 2005.
|
[27] |
Ann Marie Thomas, John P Abraham. Numerical simulation of circular synthetic jets with asymmetric forcing profiles[J]. The Open Mechanical Engineering Journal, 2013, 4(1):1-7.
|
[28] |
Abhay Kumar, Panda P K, Vivek Kumar. Combined experimental and numerical study of synthetic jet in quiescent flow[C]. Madras, Chennai, India:Proceedings of the 37th International & 4th National Conference on Fluid Mechanics and Fluid Power, 2010:1-11.
|
[29] |
Menter, F. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):269-289.
|
[30] |
Yen J, Ahmed N A. Parametric study of dynamic stall flow field with synthetic jet actuation[J]. ASME. Journal of Fluid Engineering, 2012, 134(7):106-115.
|
[31] |
Lü Y, Zhang J, Shan Y, et al. Numerical investigation for effects of actuator parameters and excitation frequencies on synthetic jet fluidic characteristics[J]. Sensors and Actuators A:Physical, 2014, 2(19):100-111.
|
1. |
陈誉,柯晓宇,周如瑞,万晓杰,郭锦涛,李晓晖. 水下球形机器人环形射流推进系统水力特性数值模拟. 南京工程学院学报(自然科学版). 2024(03): 1-10 .
![]() | |
2. |
梁晨,王亚彪,邓军,孙先帅,周海滨,何震. 油浸式变压器内检机器人喷射推进器设计及叶轮修型. 机械工程与自动化. 2021(02): 22-24+28 .
![]() |