YUAN Si, XING Qin-yan, YE Kang-sheng. AN ERROR ESTIMATE OF EEP SUPER-CONVERGENT DISPLACEMENT OF SIMPLIFIED FORM IN ONE-DIMENSIONAL C1 FEM[J]. Engineering Mechanics, 2015, 32(9): 16-19. DOI: 10.6052/j.issn.1000-4750.2015.03.0695
Citation: YUAN Si, XING Qin-yan, YE Kang-sheng. AN ERROR ESTIMATE OF EEP SUPER-CONVERGENT DISPLACEMENT OF SIMPLIFIED FORM IN ONE-DIMENSIONAL C1 FEM[J]. Engineering Mechanics, 2015, 32(9): 16-19. DOI: 10.6052/j.issn.1000-4750.2015.03.0695

AN ERROR ESTIMATE OF EEP SUPER-CONVERGENT DISPLACEMENT OF SIMPLIFIED FORM IN ONE-DIMENSIONAL C1 FEM

More Information
  • Received Date: March 16, 2015
  • Revised Date: August 13, 2015
  • For one-dimensional C1 problems of the Ritz Finite Element Method (FEM), an error estimate of the super-convergent displacement is presented for the simplified form of the Element Energy Projection (EEP) method used for super-convergence computation in post-processing stage of FEM. The mathematical analysis proves that for elements of degree m(>3) with sufficiently smooth problems and solutions, EEP displacement of the simplified form is capable of producing a convergence order of hm+2 at any point on an element, i.e. being at least one order higher than the displacement from conventional FEM.
  • [1]
    袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2): 1―9. Yuan Si, Wang Mei, An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM [J]. Engineering Mechanics, 2004, 21(2): 1―9. (in Chinese)
    [2]
    袁驷, 王枚, 和雪峰. 一维 C 1 有限元超收敛解答计算的EEP法[J]. 工程力学, 2006, 23(2): 1―9. Yuan Si, Wang Mei, He Xuefeng. Computation of super-convergent solutions in one-dimensional C 1 FEM by EEP method [J]. Engineering Mechanics, 2006, 23(2): 1―9. (in Chinese)
    [3]
    袁驷, 王旭, 邢沁妍, 叶康生. 具有最佳超收敛阶的EEP法计算格式-I算法公式[J]. 工程力学, 2007, 24(10): 1―5. Yuan Si, Wang Xu, Xing Qinyan, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method-I formulation [J]. Engineering Mechanics, 2007, 24(10): 1―5. (in Chinese)
    [4]
    Yuan Si, He Xuefeng. A self-adaptive strategy for one-dimensional FEM based on EEP method [J]. Applied Mathematics and Mechanics, 2006, 27(11): 1461―1474.
    [5]
    Yuan S, Xing Q, Wang X, Ye K. A self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order [J]. Applied Mathematics and Mechanics, 2008, 29(5): 591―602.
    [6]
    Yuan S, Du Y, Xing Q, Ye K. Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method [J]. Applied Mathematics and Mechanics, 2014, 35(10): 1223―1232.
    [7]
    赵庆华. 单元能量投影法的数学分析[D]. 长沙: 湖南大学, 2007. Zhao Qinghua. The mathematical analysis on Element Energy Projection method [D]. Changsha: Hunan University, 2007. (in Chinese)
    [8]
    袁驷, 邢沁妍. 一维Ritz有限元超收敛计算的EEP法简约格式的误差估计[J]. 工程力学, 2014, 24(11): 1―6. Yuan Si, Xing Qinyan. An error estimate of EEP super-convergent solutions of simplified form in one-dimensional Ritz FEM [J]. Engineering Mechanics, 2014, 24(11): 1―6. (in Chinese)
    [9]
    张林. 固支梁有限元解的超收敛性及最大模估计[J]. 复旦学报(自然科学版), 1996, 35(4): 421―429. Zhang Lin. Superconvergence and maximum norm estimation of FEM solution for the bending clamped beam [J]. Journal of Fudan University (Natural Science), 1996, 35(4): 421―429. (in Chinese)
    [10]
    赵新中, 陈传淼. 梁问题有限元逼近的新估计及超收敛[J]. 湖南师范大学自然科学学报, 2000, 23(4): 6―11. Zhao Xinzhong, Chen Chuanmiao. New estimates of finite element approximation to beam problem and superconvergence [J]. Journal of Natural Science of Hunan Normal University, 2000, 23(4): 6―11. (in Chinese)
    [11]
    Strang G, Fix G. An analysis of the finite element method [M]. London: Prentice-Hall, 1973: 107.
  • Related Articles

    [1]YUAN Si, WU Yue, XU Jun-jie, XING Qin-yan. EXPLORATION ON SUPER-CONVERGENT SOLUTIONS OF 3D FEM BASED ON EEP METHOD[J]. Engineering Mechanics, 2016, 33(9): 15-20. DOI: 10.6052/j.issn.1000-4750.2016.05.ST07
    [2]XU Jun-jie, YUAN Si. FURTHER SIMPLIFICATION OF THE SIMPLIFIED FORMULATION OF EEP SUPER-CONVERGENT CALCULATION IN FEMOL[J]. Engineering Mechanics, 2016, 33(增刊): 1-5. DOI: 10.6052/j.issn.1000-4750.2015.05.S025
    [3]YUAN Si, XING Qin-yan. AN ERROR ESTIMATE OF EEP SUPER-CONVERGENT SOLUTIONS OF SIMPLIFIED FORM IN ONE-DIMENSIONAL RITZ FEM[J]. Engineering Mechanics, 2014, 31(12): 1-3,16. DOI: 10.6052/j.issn.1000-4750.2014.11.0973
    [4]YUAN Si, XIAO Jia, YE Kang-sheng. EEP SUPER-CONVERGENT COMPUTATION IN FEM ANALYSIS OF FEMOL SECOND ORDER ODES[J]. Engineering Mechanics, 2009, 26(11): 1-009,.
    [5]YUAN Si, XING Qin-yan, YE Kang-sheng. A SCHEME WITH OPTIMAL ORDER OF SUPER-CONVERGENCE BASED ON EEP METHOD FOR GALERKIN FEM[J]. Engineering Mechanics, 2008, 25(11): 1-007.
    [6]YUAN Si, ZHAO Qing-hua. A SCHEME WITH OPTIMAL ORDER OF SUPER-CONVERGENCE BASED ON EEP METHOD: III MATHEMATICAL PROOF[J]. Engineering Mechanics, 2007, 24(12): 1-005,.
    [7]YUAN Si, XING Qin-yan, WANG Xu, YE Kang-sheng. A SCHEME WITH OPTIMAL ORDER OF SUPER-CONVERGENCE BASED ON EEP METHOD: II NUMERICAL RESULTS[J]. Engineering Mechanics, 2007, 24(11): 1-006.
    [8]YUAN Si, WANG Xu, XING Qin-yan, YE Kang-sheng. A SCHEME WITH OPTIMAL ORDER OF SUPER-CONVERGENCE BASED ON EEP METHOD: I FORMULATION[J]. Engineering Mechanics, 2007, 24(10): 1-005.
    [9]YUAN Si, WANG Mei, HE Xue-feng. COMPUTATION OF SUPER-CONVERGENT SOLUTIONS IN ONE-DIMENSIONAL C1 FEM BY EEP METHOD[J]. Engineering Mechanics, 2006, 23(2): 1-9.
    [10]YUAN Si, WANG Mei. AN ELEMENT-ENERGY-PROJECTION METHOD FOR POST-COMPUTATION OF SUPER-CONVERGENT SOLUTIONS IN ONE-DIMENSIONAL FEM[J]. Engineering Mechanics, 2004, 21(2): 1-9.

Catalog

    Article Metrics

    Article views (351) PDF downloads (61) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return