XU Chang-wu, REN Zhi-gang, HUO Kai-cheng. EXPERIMENT AND ANALYSIS ON INTERFACIAL PERFORMANCE OF CONCRETE FILLED STEEL TUBES UNDER SOLAR RADIATION[J]. Engineering Mechanics, 2015, 32(8): 201-210. DOI: 10.6052/j.issn.1000-4750.2014.08.0720
Citation: XU Chang-wu, REN Zhi-gang, HUO Kai-cheng. EXPERIMENT AND ANALYSIS ON INTERFACIAL PERFORMANCE OF CONCRETE FILLED STEEL TUBES UNDER SOLAR RADIATION[J]. Engineering Mechanics, 2015, 32(8): 201-210. DOI: 10.6052/j.issn.1000-4750.2014.08.0720

EXPERIMENT AND ANALYSIS ON INTERFACIAL PERFORMANCE OF CONCRETE FILLED STEEL TUBES UNDER SOLAR RADIATION

More Information
  • Received Date: August 22, 2014
  • Solar radiation is an important environmental factor which affects the nonlinear temperature distribution of concrete filled steel tubular (CFST) sections and then causes interfacial debonding, while the use of a core expansive concrete is a significant method for optimizing the interfacial performance of CFST elements. In this paper, eight CFST specimens with different expansion agent dosages were designed, their interfacial performances under solar radiation were investigated using a solar radiation simulator, and the temperature and strain time-histories of the steel tube and core concrete and the sectional temperature gradient mode along the direction of the incoming light were analyzed. Then the impacts of concrete self-stress on the sectional temperature stress, the sectional radial stress caused by radiation effect, and the position and size of the interface gap under solar radiation were investigated using heat transfer theory and a finite element method. The results show that the concrete self-stress can effectively improve the interfacial mechanical performance of CFST under solar radiation and help avoid interface debonding caused by large temperature stress gradients at the different sectional positions; it also exerts a definite influence on the interfacial gap positions and size of CFST under
  • [1]
    李庚英, 王湛. 膨胀混凝土在钢管约束下的力学性能以及微观特征[J]. 四川建筑科学研究, 2002, 28(3): 59―61. Li Gengying, Wang Zhan. Mechanical behavior and microstructure feature of expansive concrete controlled in steel tube [J]. Building Science Research of Sichuan, 2002, 28(3): 59―61. (in Chinese)
    [2]
    Mirambell E, Costa J. Thermal stresses in composite bridge according to BS5400 and ECI [J]. Proceedings of the Institution of Civil Engineers: Structural and Buildings, 1997, 122(8): 281―292.
    [3]
    Gueymard C A. Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed theoretical performance assessment [J]. Solar Energy, 2003, 74(5): 355―379.
    [4]
    Gueymard C A. Direct solar transmittance and irradiance predictions with broadband models. Part II: Validation with high-quality measurements [J]. Solar Energy, 2003, 74(5): 381―395.
    [5]
    任志刚, 胡曙光, 丁庆军. 钢管膨胀混凝土墩柱日照温度场分析[J]. 武汉理工大学学报, 2008, 30(11): 99―103. Ren Zhigang, Hu Shuguang, Ding Qingjun. Analysis on temperature field of expansive concrete filled steel tube pier under solar radiation [J]. Journal of Wuhan University of Technology, 2008, 30(11): 99―103. (in Chinese)
    [6]
    任志刚, 胡曙光, 丁庆军. 太阳辐射模型对钢管混凝土墩柱温度场的影响研究[J]. 工程力学, 2010, 27(4): 246―250, 256. Ren Zhigang, Hu Shuguang, Ding Qingjun. Research on the effect of solar radiation model on temperature field of concrete filled steel tube pier [J]. Engineering Mechanics, 2010, 27(4): 246―250, 256. (in Chinese)
    [7]
    陈宝春, 刘振宇. 日照作用下钢管混凝土桁拱温度场实测研究[J]. 中国公路学报, 2011, 24(3): 72―79. Chen Baochun, Liu Zhenyu. Research on thermal field test of concrete filled steel tubular truss arch under solar radiation [J]. China Journal of Highway and Transport, 2011, 24(3): 72―79. (in Chinese)
    [8]
    刘振宇, 陈宝春. 日照作用下钢管混凝土构件截面温度场有限元分析[J]. 公路交通科技, 2008, 25(7): 49―53. Liu Zhenyu, Chen Baochun. Finite element analysis on temperature field of CFST members under solar radiation [J]. Journal of Highway and Transportation Research and Development, 2008, 25(7): 49―53. (in Chinese)
    [9]
    彭友松, 强士中, 李松. 哑铃形钢管混凝土拱日照温度分布研究[J]. 中国铁道科学, 2006, 27(5): 71―75. Peng Yousong, Qiang Shizhong, Li Song. Temperature distributions in dumbbell cross section concrete-filled steel tube arches due to solar radiation [J]. China Railway Science, 2006, 27(5): 71―75. (in Chinese)
    [10]
    黄承逵, 徐磊, 刘毅. 钢管自密实自应力混凝土短柱轴压力学性能试验研究[J]. 大连理工大学学报, 2006, 46(5): 696―701. Huang Chenkui, Xu Lei, Liu Yi. Research on mechanical performance of self-compacting and self-stressing concrete-filled steel tube short column under axial loading [J]. Journal of Dalian University of Technology, 2006, 46(5): 696―701. (in Chinese)
    [11]
    Han L H, Yang Y F. Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections [J]. Advances in Structural Engineering, 2001, 4(2): 93―100.
    [12]
    De N S, El D. Axial load behavior of concrete filled steel tubular columns [J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2007, 160(1): 13―25.
    [13]
    胡曙光, 丁庆军. 钢管混凝土[M]. 北京: 人民交通出版社, 2007: 110. Hu Shuguang, Ding Qingjun. Concrete filled steel tube [M]. Beijing: China Communications Press, 2007: 110. (in Chinese)
    [14]
    Xu C W, Huo K C, REN Z G. Design and practical application of the solar radiation simulator [J]. Sensors & Transducers, 2013, 159(11): 358―363.
    [15]
    Xu C W, Huo K C, Ren Z G. Experimental studies on interface testing method of concrete filled steel tube under axial compressive load [J]. Advances in information Sciences and Service Sciences, 2013, 5(10): 387―396.
    [16]
    韩林海. 钢管混凝土结构[M]. 北京: 科学出版社, 2000: 290. Han Linhai. Concrete filled steel tubular structure [M]. Beijing: Science Press, 2000: 290. (in Chinese)
    [17]
    卢丽冰, 齐晗兵, 王莉莉. 混凝土结构钢管与混凝土间接触热阻的试验研究[J]. 油气田地面工程, 2002, 21(5): 90. Lu Libing, Qi Hanbing, Wang Lili. Research on thermal contact resistance between steel tube and concrete of concrete structure [J]. Oil-Gasfield Surface Engineering, 2002, 21(5): 90. (in Chinese)
    [18]
    孔详谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999: 59. Kong Xiangqian. Thermal stress analysis of the finite element method [M]. Shanghai: Shanghai Jiao Tong University Press, 1999: 59. (in Chinese)
  • Cited by

    Periodical cited type(7)

    1. 安海平. 不同规范温度梯度模式对钢管混凝土拱桥温度效应的影响. 中国标准化. 2022(23): 145-150 .
    2. 张峰,刘佳琪,高磊,韩福洲,高华睿. 波形钢腹板PC组合箱梁内衬混凝土部位温度分布研究. 应用基础与工程科学学报. 2020(01): 123-133 .
    3. Jiang Liu,Yongjian Liu,Chenyu Zhang,Qiuhong Zhao,Yi Lyu,Lei Jiang. Temperature action and effect of concrete-filled steel tubular bridges:A review. Journal of Traffic and Transportation Engineering(English Edition). 2020(02): 174-191 .
    4. 刘永健,刘江,张宁. 桥梁结构日照温度作用研究综述. 土木工程学报. 2019(05): 59-78 .
    5. 彭晓宇. 混凝土温度自应力数值计算方法. 交通科技. 2018(03): 72-74+78 .
    6. 林新元,董向前,刘冠之,张万志,张峰. 钢管混凝土拱桥内置栓钉的防脱空研究. 施工技术. 2017(S2): 854-857 .
    7. 董旭,邓振全,李树忱,谷守法,张峰. 大跨波形钢腹板箱梁桥日照温度场及温差效应研究. 工程力学. 2017(09): 230-238 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (326) PDF downloads (94) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return