BAI Xiao-yu, ZHANG Ming-yi, KOU Hai-lei. FIELD EXPERIMENTAL STUDY OF LOAD TRANSFER MECHANISM OF GFRP ANTI-FLOATING ANCHORS BASED ON EMBEDDED BARE FIBER BRAGG GRATING SENSING TECHNOLOGY[J]. Engineering Mechanics, 2015, 32(8): 172-181. DOI: 10.6052/j.issn.1000-4750.2014.05.0461
Citation: BAI Xiao-yu, ZHANG Ming-yi, KOU Hai-lei. FIELD EXPERIMENTAL STUDY OF LOAD TRANSFER MECHANISM OF GFRP ANTI-FLOATING ANCHORS BASED ON EMBEDDED BARE FIBER BRAGG GRATING SENSING TECHNOLOGY[J]. Engineering Mechanics, 2015, 32(8): 172-181. DOI: 10.6052/j.issn.1000-4750.2014.05.0461

FIELD EXPERIMENTAL STUDY OF LOAD TRANSFER MECHANISM OF GFRP ANTI-FLOATING ANCHORS BASED ON EMBEDDED BARE FIBER BRAGG GRATING SENSING TECHNOLOGY

More Information
  • Received Date: May 29, 2014
  • Based on the pull-out destructive field test of three full-thread GFRP anti-floating anchors, with successfully applied embedded bare fiber Bragg grating sensing technology to pull-out tests on GFRP anti-floating anchors, the load-bearing characteristics, load transfer characteristics and failure mechanism of GFRP anti-floating anchors have been studied. The results show that the embedded bare fiber Bragg grating sensing technology has its unique superiority, and will not cause damage to GFRP anti-floating anchors. The GFRP anti-floating anchors basically experience shear failure. The ultimate uplift capacity of GFRP anti-floating anchors with an anchorage length of 5.0 m and a diameter of 28 mm is 400 kN, which can satisfy engineering demands. The axial stresses of anchors are mainly concentrated in the area of about 3.0 m away from the bolt hole top, which decrease with the increase of anchor depth. The peak value of shear stress appears about 0.8 m under the bolt hole top, while the peak value of shear stress curve increases gradually and moves to deeper location with the load increase. According to the test results, the failure mechanism of GFRP anti-floating anchors is further analyzed. The research results can provide theoretical basis for application of GFRP anti-floating anchors.
  • [1]
    罗小东. 光纤光栅振动传感关键技术研究[D]. 西安: 西北大学, 2008. Luo Xiaodong. Study on the key technology of fiber gratings vibration sensing [D]. Xi’an: Northwest University, 2008. (in Chinese)
    [2]
    夏元友, 芮瑞, 梁磊, 等. 光纤渗压传感器与公路软基监控试验研究[J]. 岩土工程学报, 2005, 27(2): 162―166. Xia Yuanyou, Rui Rui, Liang Lei, et al. An attempt of embedding fiber optic Bragg grating sensors in freeway foundation to detect the pore-water pressure [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 162―166. (in Chinese)
    [3]
    詹胜, 谭华耀, 徐幼麟, 等. 裸光纤光栅及光纤力锤在大桥模型试验中的应用[J]. 工程力学, 2011, 28(3): 103―108. Zhan Sheng, Tan Huayao, Xu Youlin, et al. Applications of naked optical fiber bragg grating and fiber optic impact hammer in bridge model test [J]. Engineering Mechanics, 2011, 28(3): 103―108. (in Chinese)
    [4]
    苏胜昔, 杨昌民, 范喜安. 光纤光栅传感技术在高速公路隧道围岩变形实时监测中的应用[J]. 工程力学, 2014, 31(增刊1): 134―138, 144. Su Shengxi, Yang Changmin, Fan Xi’an. Application of fiber bragg grating sensor technology in highway tunnel surrounding rock deformation and real-time monitoring [J]. Engineering Mechanics, 2014, 31(Suppl 1): 134―138, 144. (in Chinese)
    [5]
    黄广龙, 张枫, 徐洪钟, 等. FBG传感器在深基坑支撑应变监测中的应用[J]. 岩土工程学报, 2008, 30(增刊): 436―440. Huang Guanglong, Zhang Feng, Xu Hongzhong, et al. Strain monitoring of interior bracing in deep foundation pit by FBG sensors [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(Suppl): 436―440. (in Chinese)
    [6]
    邱松, 顾浩, 曹进捷, 等. FBG传感技术在混凝土预制桩水平载荷试验中的应用[J]. 岩土工程学报, 2011, 33(增刊2): 105―107. Qiu Song, Gu Hao, Cao Jinjie, et al. Application of FBG sensing technology in lateral load tests on precast concrete piles [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl 2): 105―107. (in Chinese)
    [7]
    隋海波, 施斌, 张丹, 等. 基于BOTDR的锚杆拉拔试验研究[J]. 岩土工程学报, 2008, 30(5): 755―759. Sui Haibo, Shi Bin, Zhang Dan, et al. BOTDR-based pull-out tests on anchor bolts [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 755―759 (in Chinese)
    [8]
    Sebastian W, Gegeshidze G, Luke S. Positive and negative moment behaviors of hybrid members comprising cellular GFRP bridge decking epoxy-bonded to reinforced concrete beams [J]. Composites Part B: Engineering, 2013, 45(1): 486―496.
    [9]
    Lee H K, Pyo S H, Kim B R. On joint strengths, peel stresses and failure modes in adhesively bonded double-strap and supported single-lap GFRP joints [J]. Composite Structures, 2009, 87(1): 44―54.
    [10]
    李国维, 刘朝权, 黄志怀, 等. 应用玻璃纤维锚杆加固公路边坡现场试验[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4056―4062. Li Guowei, Liu Chaoquan, Huang Zhihuai, et al. In-situ test of glass fiber reinforced polymer anchor on highway slope reinforcement [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl 2): 4056―4062. (in Chinese)
    [11]
    刘颖浩, 袁勇. 全螺纹GFRP黏结型锚杆锚固性能试验研究[J]. 岩石力学与工程学报, 2010, 29(2): 394―400. Liu Yinghao, Yuan Yong. Experimental research on anchorage performance of full-thread GFRP bonding anchor bolts [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 394―400. (in Chinese)
    [12]
    李国维, 戴剑, 倪春, 等. 大直径内置光纤光栅玻璃纤维增强聚合物锚杆梁杆黏结试验[J]. 岩石力学与工程学报, 2013, 32(7): 1449―1457. Li Guowei, Dai Jian, Ni Chun, et al. Bond behavior between concrete frame beam and large-diameter glass fiber reinforced polymer (GFRP) anchor rod with built-in fiber bragg grating sensor [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1449―1457. (in Chinese)
    [13]
    Zhu Honghu, Yin Jianhua, Youngman Albert T, Jin Wei. Field pullout testing and performance evaluation of GFRP soil nails [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 633―642.
    [14]
    黄志怀, 刘汉东. BOTDR技术监测GFRP锚杆应变的试验研究[J]. 华北水利水电学院学报, 2005, 26(2): 49―51. Huang Zhihuai, Liu Handong. Experimental study of the applications of BOTDR technology to strain monitoring of GFRP anchor bar [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2005, 26(2): 49―51. (in Chinese)
    [15]
    李国维, 高磊, 黄志怀, 等. 全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验[J]. 岩石力学与工程学报, 2007, 26(8): 1653―1663. Li Guowei, Gao Lei, Huang Zhihuai, et al. Pull-out model experiment on failure mechanism of pull-length bonding glass fiber reinforced polymer rebar [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1653―1663. (in Chinese)
    [16]
    JGJ120-2012, 建筑基坑支护技术规程[S]. 北京: 中国建筑工业出版社, 2012. JGJ120-2012, Technical specification for retaining and protection of building foundation excavations [S]. Beijing: China Architecture and Building Press, 2012. (in Chinese)
    [17]
    Al-Zahrani M M. Bond behavior of fiber reinforced plastic reinforcements with concrete [D]. University Park, PA: The Pennsylvania State University, 1995.
    [18]
    Kilic A, Yasar E, Celik A G. Effect of grout properties on the pull-out load capacity of fully grouted rock bolt [J]. Tunneling and Underground Space Technology, 2002, 17(4): 355―362.
    [19]
    高丹盈, Brahim B. 纤维聚合物筋混凝土的粘结机制及锚固长度的计算方法[J]. 水利学报, 2000(11): 70―78. Gao Danying, Brahim B. Bonding mechanism and calculating method for embedded length of fiber reinforced polymer rebars in concrete [J]. Journal of Hydraulic Engineering, 2000(11): 70―78. (in Chinese)
    [20]
    黄志怀, 李国维, 王思敬, 等.不同围岩条件玻璃纤维增强塑料锚杆结构破坏机制现场试验研究[J]. 岩石力学与工程学报, 2008, 27(5): 1008―1018. Huang Zhihuai, Li Guowei, Wang Sijing, et al. Field test on pullout behaviors of anchorage structures with glass fiber reinforced plastic rods for different surrounding rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1008―1018. (in Chinese)
    [21]
    尤春安. 全长粘结式锚杆的受力分析[J]. 岩石力学与工程学报, 2000, 19(3): 339―341. You Chun’an. Mechanical analysis on wholly grouted anchor [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 339―341. (in Chinese)
    [22]
    Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete [J]. Journal of composites for construction, 1997, 1(2): 40―51.
    [23]
    Soong W H, Raghavan J, Rizkalla S H. Fundamental mechanisms of bonding of glass fiber reinforced polymer reinforcement to concrete [J]. Construction and Building Materials, 2011, 25(6): 2813―2821.
    [24]
    Won J P, Park C G, Kim H H, et al. Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete [J]. Composites (Part B: Engineering), 2008, 39(5): 747―755.
    [25]
    黄志怀, 李国维, 王思敬, 等. 不同围岩条件玻璃纤维增强塑料锚杆结构破坏机制现场试验研究[J]. 岩石力学与工程学报, 2008, 27(5): 1008―1018. Huang Zhihuai, Li Guowei, Wang Sijing, et al. Field test on pullout behaviors of anchorage structures with glass fiber reinforced plastic rods for different surrounding rock masses [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1008―1018. (in Chinese)
    [26]
    GB50086-2001, 锚杆喷射混凝土支护技术规范[S]. 北京: 中国计划出版社, 2001. GB50086-2001, Specifications for bolt-shotcrete support [S]. Beijing: China Planning Press, 2001. (in Chinese)
    [27]
    Harris B. 工程复合材料[M]. 陈祥宝, 张宝艳, 译. 北京: 化学工业出版社, 2004: 69―80. Harris B. Engineering composite materials [M]. Translated by Cheng Xiangbao, Zhang Baoyan. Beijing: Chemical Industry Press, 2004: 69―80. (in Chinese)
    (上接第171页)
    [28]
    卢亦焱, 薛继锋, 张学朋, 龚田牛. 外套钢管自密实混凝土加固钢筋混凝土中长圆柱轴压性能试验研究[J]. 土木工程学报, 2013, 46(2): 100―107. Lu Yiyan, Xue Jifeng, Zhang Xuepeng, Gong Tianniu. Experimental study on behavior of middle long RC column strengthened by self-compacting concrete and steel tube under the axial load [J]. China Civil Engineering Journal. 2013 ,46(2): 100―107. (in Chinese)
    [29]
    卢亦焱, 龚田牛, 张学朋, 薛继锋. 外套钢管自密实混凝土加固钢筋混凝土圆柱轴压受力分析[J]. 工程力学, 2013, 30(9): 158―165. Lu Yiyan, Gong Tianniu, Zhang Xuepeng, Xue Jifeng. Theoretical analysis of circular RC column strengthened with self-compacting concrete filled circular steel jacket under axial loading [J]. Engineering Mechanics, 2013, 30(9): 158―165. (in Chinese)
    [30]
    陈宝春, 王来永, 欧智菁, 韩林海. 钢管混凝土偏心受压应力-应变试验研究[J]. 工程力学, 2003, 20(6): 154―159. Chen Baochun, Wang Laiyong, Ou Zhiqing, Han Linhai. Experimental study of stress-strain relation of eccentrically-loaded concrete-filled steel tubular columns [J]. Engineering Mechanics, 2003, 20(6): 154―159. (in Chinese)
    [31]
    陈宝春, 陈友杰, 王来永, 韩林海. 钢管混凝土偏心受压应力-应变分析模型研究[J]. 中国公路学报, 2004, 17(1): 24―28. Chen Baochun, Chen Youjie, Wang Laiyong, Han Linhai. Study of stress-strain relation of concrete filled steel tubular eccentric compression column [J]. China Journal of Highway and Transport, 2004, 17(1): 24―28. (in Chinese)
  • Related Articles

    [1]LIU Hui-peng, LIU Fu-Jun, SONG Meng-yan, ZHOU Fu-lin. FAILURE MECHANISM OF ISOLATION STRUCTURE BASED ON PROBABILITY ANALYSIS[J]. Engineering Mechanics, 2024, 41(11): 88-102. DOI: 10.6052/j.issn.1000-4750.2022.09.0789
    [2]ZHAO Ling-feng, ZHANG Ling-kai. SLIDING FAILURE MECHANISM AND STABILITY ANALYSIS OF EXPANSIVE CANAL SLOPE IN NORTH XINJIANG WATER SUPPLY PHASE I PROJECT[J]. Engineering Mechanics, 2023, 40(3): 129-140, 188. DOI: 10.6052/j.issn.1000-4750.2021.09.0711
    [3]FANG Li-jing, QU Wen-jun, ZHANG Sheng-dong. MECHANICAL MODEL FOR WITHDRAWAL FAILURE OF SELF-TAPPING SCREWS IN GLULAM[J]. Engineering Mechanics, 2022, 39(6): 212-225. DOI: 10.6052/j.issn.1000-4750.2021.11.0866
    [4]ZHONG Yang-long, GAO Liang, WANG Pu, LIANG Shu-juan. MECHANISM OF INTERFACIAL SHEAR FAILURE BETWEEN CRTSⅡ SLAB AND CA MORTAR UNDER TEMPERATURE LOADING[J]. Engineering Mechanics, 2018, 35(2): 230-238. DOI: 10.6052/j.issn.1000-4750.2016.09.0753
    [5]ZHAO Shi-chun, YU Zhi-xiang, ZHAO Lei, QI Xin, WEI Tao. DAMAGE MECHANISM OF ROCKFALL BARRIERS UNDER STRONG IMPACT LOADING[J]. Engineering Mechanics, 2016, 33(10): 24-34. DOI: 10.6052/j.issn.1000-4750.2016.06.ST08
    [6]WANG Ni, CHEN Zong-ping, CHEN Yu-liang. FAILURE MECHANISM AND DAMAGE ANALYSIS OF SPACE CORNER JOINTS OF SRC L-SHAPED COLUMNS UNDER CYCLIC LOADING[J]. Engineering Mechanics, 2015, 32(3): 140-150. DOI: 10.6052/j.issn.1000-4750.2013.10.0908
    [7]HE Si-ming, WU Yong, LI Xin-po. FAILURE MECHANISM OF DANGEROUS ROCK UNDER SEISMIC TENSION-SHEAR ACTION[J]. Engineering Mechanics, 2012, 29(4): 178-184.
    [8]LI Hong-jiang. ANALYSIS ON FAILURE MECHANISM OF WET JOINTS IN THE BOX- GIRDER OF AN EXISTING PC CABLE-STAYED BRIDGE[J]. Engineering Mechanics, 2012, 29(增刊Ⅱ): 210-215,232. DOI: 10.6052/j.issn.1000-4750.2011.11.S042
    [9]WU Kai, XUE Jian-yang. FAILURE MECHANISM AND SHEAR CAPACITY CALCULATION OF TRANSFER COLUMN IN SRC-RC HYBRID STRUCTURE[J]. Engineering Mechanics, 2011, 28(10): 133-138.
    [10]DU Cheng-bin, SHANG Yan. STUDY ON MICRO-MECHANICAL FAILURE MECHANISM OF THE THREE-GRADATION CONCRETE UNDER STATIC AND DYNAMIC LOADINGS[J]. Engineering Mechanics, 2006, 23(3): 141-146,.
  • Cited by

    Periodical cited type(24)

    1. 闫楠,孙淦,白晓宇,王忠胜,刘一鸿,贾世祥,张亚妹,崔岚. 嵌岩抗浮锚杆承载性能现场试验与机理分析. 中南大学学报(自然科学版). 2025(02): 730-743 .
    2. 朱智勇,焦齐柱. 锚杆止浆塞排气与稳压作用机理研究. 建筑技术开发. 2024(03): 1-3 .
    3. 张亚妹,孙淦,白晓宇,闫楠,王永洪,于龙涛. 基于光纤传感技术的泥岩地基动力打入桩施工效应现场试验. 岩石力学与工程学报. 2023(S1): 3731-3742 .
    4. 陈建勋,陈丽俊,罗彦斌,刘立明,王传武,赵鹏宇. 软岩隧道锁脚锚管应变现场测试及对拱脚的约束作用研究. 中国公路学报. 2023(11): 218-230 .
    5. 白晓宇,郑晨,张明义,王永洪,闫楠. 全长黏结岩石抗浮锚杆承载性能现场试验. 重庆大学学报. 2021(03): 1-12 .
    6. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    7. 白晓宇,王海刚,张明义,郑晨. 抗浮锚杆承载性能研究进展. 科学技术与工程. 2020(08): 2949-2958 .
    8. 郑晨,白晓宇,张明义,王海刚. 玻璃纤维增强聚合物锚杆在地下结构抗浮工程中的研究进展. 材料导报. 2020(13): 13194-13202 .
    9. 白晓宇,张明义,匡政,王永洪,闫楠. 全长黏结GFRP抗浮锚杆荷载分布函数模型研究. 中南大学学报(自然科学版). 2020(07): 1977-1988 .
    10. 匡政,白晓宇,张明义. 玻璃纤维增强聚合物抗浮锚杆的临界锚固长度计算. 科学技术与工程. 2019(08): 244-249 .
    11. 匡政,白晓宇,张明义,朱磊,陈小钰. 弯曲与直锚GFRP复合材料抗浮锚杆锚固特性试验研究. 复合材料学报. 2019(05): 1063-1073 .
    12. 匡政,白晓宇,张明义,王永洪,闫楠. 考虑锚固体不均匀及杆体脱黏效应的GFRP抗浮锚杆杆体荷载分布函数. 岩石力学与工程学报. 2019(06): 1158-1171 .
    13. 刘海燕,孟伟新,王振清,田栋杰,徐向楠,刘旭. “二八灰土”回填地下粮仓浮力预警试验研究. 农业工程学报. 2019(11): 299-305 .
    14. 白晓宇,匡政,张明义,王永洪,刘俊伟,闫楠. 全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究. 材料导报. 2019(18): 3035-3042 .
    15. 张明义,郑晨,白晓宇,匡政,王永洪,朱磊. GFRP筋及钢筋抗浮锚杆与基础底板锚固性能试验研究. 应用基础与工程科学学报. 2019(04): 931-946 .
    16. 白晓宇,张明义,匡政,王永洪,闫楠. 全长黏结GFRP抗浮锚杆拉拔特性分析. 中南大学学报(自然科学版). 2019(08): 1991-2000 .
    17. 白晓宇,张明义,匡政,闫楠. 全长黏结岩石GFRP抗浮锚杆变形特性分析. 广西大学学报(自然科学版). 2018(04): 1466-1473 .
    18. 匡政,白晓宇,张明义,朱磊. GFRP抗浮锚杆在混凝土底板中锚固特性现场试验. 广西大学学报(自然科学版). 2018(04): 1588-1595 .
    19. 白晓宇,张明义,王永洪,闫楠. 岩石GFRP抗浮锚杆承载性能室内试验与机理分析. 土木建筑与环境工程. 2018(05): 78-85 .
    20. 赵天杨,白晓宇,张明义,陈小钰,贾科科. 钢筋抗浮锚杆承载特性现场试验与数值仿真. 科学技术与工程. 2018(07): 38-43 .
    21. 白晓宇,张明义,朱磊,王永洪,赵天杨,陈小钰. 全长黏结GFRP抗浮锚杆界面剪切特性试验研究. 岩石力学与工程学报. 2018(06): 1407-1418 .
    22. 张明义,白晓宇,匡政,闫楠,贾科科. 玻璃纤维增强聚合物抗浮锚杆与基础底板的锚固特性有限元分析. 广西大学学报(自然科学版). 2018(05): 1878-1884 .
    23. 白晓宇,张明义,匡政,王永洪,闫楠,朱磊. 光纤光栅传感技术在GFRP抗浮锚杆现场拉拔试验中的应用. 岩土力学. 2018(10): 3891-3899 .
    24. 张明义,白晓宇,李伟伟. GFRP抗浮锚杆螺母托盘锚具外锚固性能试验. 中南大学学报(自然科学版). 2016(01): 239-246 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (433) PDF downloads (120) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return