GONG Shu-guang, LU Hai-shan, ZHANG Jian-ping, TANG Fang. STUDY ON AN IMPROVED ALGORITHM OF ELEMENT-FREE GALERKIN METHOD BASED ON INTERACTING NODAL PAIRS[J]. Engineering Mechanics, 2015, 32(8): 16-21. DOI: 10.6052/j.issn.1000-4750.2014.01.0017
Citation: GONG Shu-guang, LU Hai-shan, ZHANG Jian-ping, TANG Fang. STUDY ON AN IMPROVED ALGORITHM OF ELEMENT-FREE GALERKIN METHOD BASED ON INTERACTING NODAL PAIRS[J]. Engineering Mechanics, 2015, 32(8): 16-21. DOI: 10.6052/j.issn.1000-4750.2014.01.0017

STUDY ON AN IMPROVED ALGORITHM OF ELEMENT-FREE GALERKIN METHOD BASED ON INTERACTING NODAL PAIRS

More Information
  • Received Date: January 06, 2014
  • In order to save memory in the stiffness matrix and improve the global search efficiency for nodes and integral points, in this paper we propose an improved algorithm for the element free Galerkin method by using the idea of crossing interacting node pairs to assemble a stiffness matrix, and using the triangular integral mesh to carry out integral calculation. Meanwhile, the CSR format is employed to store stiffness matricies, and a local search method is presented for searching nodes and integral points. The memory requirements of the stiffness matrix and the search efficiency of nodes and integral points for different sized meshes are compared by numerical examples. The results obtained show that the improved algorithm can save memory effectively and improve the search efficiency of nodes and integral points, and is well adapted to complex geometry models.
  • [1]
    Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229―256.
    张希, 姚振汉. 无网格彼得洛夫伽辽金法在大变形问题中的应用[J]. 工程力学, 2006, 23(增刊I): 16―20. Zhang Xi, Yao Zhenhan. Application of MLPG method in large deformation analysis [J]. Engineering Mechanics, 2006, 23(Suppl I): 16―20. (in Chinese)
    2 蔡永昌, 朱合华. 裂纹扩展过程模拟的无网格MSLS方法[J]. 工程力学, 2010, 27(7): 21―26. Cai Yongchang, Zhu Hehua. Simulation of crack growth by the MSLS method [J]. Engineering Mechanics, 2010, 27(7): 21―26. (in Chinese)
    3 龚曙光, 曾维栋, 张建平. Reissner-Mindlin板壳无网格法的闭锁与灵敏度分析及优化的研究[J]. 工程力学, 2011, 28(4): 42―48. Gong Shuguang, Zeng Weidong, Zhang Jiaoping. Study on numerical locking and sensitivity analysis and optimization of Reissner-Mindlin plate and shell with meshless method based on EFG method [J]. Engineering Mechanics, 2011, 28(4): 42―48. (in Chinese)
    [2]
    Metsis P, Papadrakakis M. Overlapping and non-overlapping domain decomposition methods for large-scale meshless EFG simulations [J]. Computer Methods in Applied Mechanics and Engineering, 2012, 229: 128―141.
    [3]
    Karatarakis A, Metsis P, Papadrakakis M. GPU-acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods [J]. Computer Methods in Applied Mechanics and Engineering, 2013, 258: 63―80.
    曾亿山, 卢德唐, 曾清红. 无单元伽辽金法的并行计算[J]. 计算力学学报, 2008, 25(3): 385―391. Zeng Yishan, Lu Detang, Zeng Qinghong. Parallel computing of element-free Galerkin method for elasto-dynamics [J]. Chinese Journal of Computational Mechanics, 2008, 25(3): 385―391. (in Chinese)
    [4]
    Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 49―74.
    [5]
    Dolbow J, Belytschko T. Numerical integration of the Galerkin weak form in meshfree methods [J]. Computational Mechanics, 1999, 23(3): 219―230.
    [6]
    Zhang X, Lu M, Wegner J L. A 2-D meshless model for jointed rock structures [J]. International Journal for Numerical Methods in Engineering, 2000, 47(10): 1649―1661.
    (参考文献[11]―[16]转第28页)
  • Related Articles

    [1]LI Tian, CHAO Jin-tao, FAN Jia. THEORETICAL AND EXPERIMENTAL STUDY ON FREE TORSION OF ISOSCELES TRIANGULAR SPACE TRUSS[J]. Engineering Mechanics, 2018, 35(5): 223-230,238. DOI: 10.6052/j.issn.1000-4750.2017.12.0984
    [2]XU Jia, ZHONG Hong-zhi. INFLUENCE OF QUADRATURE ACCURACY ON THE CONVERGENCE RATE OF TRIANGULAR QUADRATURE ELEMENTS[J]. Engineering Mechanics, 2018, 35(1): 74-78,147. DOI: 10.6052/j.issn.1000-4750.2016.09.0699
    [3]WANG Zhen, SUN Qin. GEOMETRICALLY NONLINEAR ANALYSIS USING A COROTATIONAL TRIANGULAR THICK AND THIN SHELL ELEMENT[J]. Engineering Mechanics, 2014, 31(5): 27-33. DOI: 10.6052/j.issn.1000-4750.2012.12.0958
    [4]WANG Zhen, ZHAO Yang, HU Ke. TRIANGULAR THIN-PLATE ELEMENT BASED ON VECTOR FORM INTRINSIC FINITE ELEMENT[J]. Engineering Mechanics, 2014, 31(1): 37-45. DOI: 10.6052/j.issn.1000-4750.2012.09.0663
    [5]WEN Xue-zhang, LONG Yu-qiu, HE Fang-long. THE GENERALIZED CONFORMING TRIANGULAR MEMBRANE ELEMENTS WITH ROTATIONAL DEGREE OF FREEDOM[J]. Engineering Mechanics, 2002, 19(6): 11-15.
    [6]XU Yin, LONG Yu-qiu, LONG Zhi-fei, ZHANG Chun-sheng. THE GENERALIZED CONFORMING TRIANGULAR ELEMENT WITH DRILLING DEGREES OF FREEDOM INCLUDING BUBBLE DISPLACEMENT[J]. Engineering Mechanics, 2000, 17(3): 1-9,54.
    [7]WANG Xuan-min, LIU Guang-dong. A TRIANGULAR ELEMENT AND TWO TRIANGULAR PRISM ELEMENTS WITH ROTATIONAL DOF[J]. Engineering Mechanics, 1999, 16(4): 42-46,6.
    [8]Bian Yuhong. BENDING OF TRIANGULAR PLATE WITH FREE HYPOTENUSE UNDER UNIPOIUM LOAD[J]. Engineering Mechanics, 1998, 15(3): 139-144.
    [9]Cen Song, Long Zhifei. A NEW TRIANGULAR GENERALIZED CONFORMING ELEMENT FOR THIN THICK PLATES[J]. Engineering Mechanics, 1998, 15(1): 10-22.
    [10]Long Yuqiu, Xu Yin. GENERALIZED CONFORMING TRIANGULAR FLAT SHELL ELEMENT[J]. Engineering Mechanics, 1993, 10(4): 1-8.
  • Cited by

    Periodical cited type(2)

    1. 龚曙光,廖宇梨,谢桂兰,张建平. FE-EFG耦合法的GPU并行加速及应用研究. 机械工程学报. 2018(11): 197-204 .
    2. 顾永超,陈伟球,刘伟,杨庆大. 弹塑性杆非线性断裂问题的新型增强有限元法. 工程力学. 2017(11): 1-8 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (346) PDF downloads (92) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return