LYU Lin-hai, LIU Chen-hui, DONG Cheng, HUANG Zhong-hui, WANG Bing-hua, MEI Guo-xiong. ANALYTICAL SOLUTION OF BIOT CONSOLIDATION FOR A HOMOGENEOUS SATURATED SOIL UNDERGOING STAGED EXCAVATION[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0666
Citation: LYU Lin-hai, LIU Chen-hui, DONG Cheng, HUANG Zhong-hui, WANG Bing-hua, MEI Guo-xiong. ANALYTICAL SOLUTION OF BIOT CONSOLIDATION FOR A HOMOGENEOUS SATURATED SOIL UNDERGOING STAGED EXCAVATION[J]. Engineering Mechanics. DOI: 10.6052/j.issn.1000-4750.2023.09.0666

ANALYTICAL SOLUTION OF BIOT CONSOLIDATION FOR A HOMOGENEOUS SATURATED SOIL UNDERGOING STAGED EXCAVATION

More Information
  • Received Date: September 12, 2023
  • Revised Date: January 13, 2024
  • Available Online: March 18, 2024
  • The rebound at the bottom of a foundation pit inevitably occurs due to the excavation’s unloading effect. This effect induces reverse consolidation deformation in the bottom soil. Based on the Biot’s consolidation theory, the reverse consolidation model of a homogeneous saturated foundation subjected to staged excavation is established. The Laplace-Fourier transform method is employed to solve the model, yielding analytical solutions for displacement and excess pore-water pressure of foundation soils. The solutions are validated by comparing them with numerical simulation results and field monitoring data. Parameter analysis shows that a larger horizontal permeability coefficient accelerates consolidation and increases rebound after excavation. An increased foundation rebound modulus reduces rebound and speeds up consolidation, effectively enhancing foundation pit stability. The Poisson's ratio of the foundation has minimal influence on soil rebound during excavation. The total rebound at the end of excavation increases with the construction period’s duration. In multi-stage excavation with the same total construction period, a higher excavation rate in the last stage results in a smaller rebound and a larger accumulated negative excess pore-water pressure.

  • [1]
    OU C Y, LIAO J T, LIN H D. Performance of diaphragm wall constructed using top-down method [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 798 − 808. doi: 10.1061/(ASCE)1090-0241(1998)124:9(798)
    [2]
    王钊, 邹维列, 李广信. 挡土结构上的土压力和水压力[J]. 岩土力学, 2003, 24(2): 146 − 150.

    WANG Zhao, ZOU Weilie, LI Guangxing. Earth pressure and water pressure on retaining structure [J]. Rock and Soil Mechanics, 2003, 24(2): 146 − 150. (in Chinese)
    [3]
    HU Q Z, ZOU Q, DING Z G, et al. Experimental study on the variation law of excess pore water pressure at the bottom of the foundation pit for excavation [J]. Advances in Materials Science and Engineering, 2020, 2020: 9478725.
    [4]
    陈仁朋, 刘书伦, 孟凡衍, 等. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究[J]. 岩土工程学报, 2020, 42(6): 1132 − 1138.

    CHEN Renpeng, LIU Shulun, MENG Fanyan, et al. Centrifuge modeling of excavation effects on a nearby tunnel in soft clay [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1132 − 1138. (in Chinese)
    [5]
    徐浩峰, 应宏伟, 朱向荣. 某软土深基坑工程时间效应有限元分析[J]. 工程地质学报, 2007, 15(1): 92 − 97.

    XU Haofeng, YING Hongwei, ZHU Xiangrong. Finite element analysis of time-effect on deep excavations in soft clay [J]. Journal of Engineering Geology, 2007, 15(1): 92 − 97. (in Chinese)
    [6]
    宰金珉. 开挖回弹量预测的简化方法[J]. 南京建筑工程学院学报, 1997(2): 23 − 27.

    ZAI Jinmin. The simplified method of prediction for the foundation ditch’s rebound of excavation [J]. Journal of Nanjing Architectural and Civil Engineering Institute, 1997(2): 23 − 27. (in Chinese)
    [7]
    童星, 袁静, 姜叶翔, 等. 基于Mindlin解的基坑分层卸荷附加应力计算及回弹变形的多因素影响分析[J]. 岩土力学, 2020, 41(7): 2432 − 2440.

    TONG Xing, YUAN Jing, JIANG Yexiang, et al. Calculation of layered unloading additional stress of foundation pit based on Mindlin solution and the analysis of multiple factors influencing the rebound deformation [J]. Rock and Soil Mechanics, 2020, 41(7): 2432 − 2440. (in Chinese)
    [8]
    王理想, 梁荣柱, 李忠超, 等. 基坑上跨开挖诱发既有盾构隧道隆起变形研究[J]. 工程力学, 2022, 39(12): 130 − 140. doi: 10.6052/j.issn.1000-4750.2021.07.0547

    WANG Lixiang, LIANG Rongzhu, LI Zhongchao, et al. Heave deformation of existing shield tunnel induced by over-crossing excavation [J]. Engineering Mechanics, 2022, 39(12): 130 − 140. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0547
    [9]
    LIANG R Z, XIA T D, HUANG M S, et al. Simplified analytical method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect [J]. Computers and Geotechnics, 2017, 81: 167 − 187. doi: 10.1016/j.compgeo.2016.08.017
    [10]
    CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior [J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657 − 1673. doi: 10.1061/JSFEAQ.0001713
    [11]
    张冬霁. 考虑空间与时间效应的基坑工程数值分析研究[D]. 杭州: 浙江大学, 2000.

    ZHANG Dongji. Numerical analysis of deep excavations considering spatial and time effects [D]. Hangzhou: Zhejiang University, 2000. (in Chinese)
    [12]
    周立. 考虑流变和固结的基坑工程性状研究[D]. 南昌: 南昌航空大学, 2014.

    ZHOU Li. Study of behaviors of foundation pit considering influence of creep and consolidation [D]. Nanchang: Nanchang Hangkong University, 2014. (in Chinese)
    [13]
    TERZAGHI K. Principles of soil mechanics: IV Settlement and consolidation of clay [J]. Engineering News-Record, 1925, 95(3): 874 − 878.
    [14]
    江文豪, 詹良通. 真空联合堆载预压下基于指数形式渗流的砂井地基非线性固结解[J]. 工程力学, 2021, 38(2): 69 − 76, 133. doi: 10.6052/j.issn.1000-4750.2020.03.0190

    JIANG Wenhao, ZHAN Liangtong. Analytical solution for nonlinear consolidation of sand-drained ground with exponential flow under vacuum combined surcharge preloading [J]. Engineering Mechanics, 2021, 38(2): 69 − 76, 133. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0190
    [15]
    冯霞, 宗梦繁, 田乙, 等. 考虑边界排水时间效应的软土一维非线性固结近似解答[J]. 工程力学, 2023, 40(1): 100 − 110. doi: 10.6052/j.issn.1000-4750.2021.07.0575

    FENG Xia, ZONG Mengfan, TIAN Yi, et al. Approximate solution for one-dimensional nonlinear consolidation theory of soil considering the time effect of boundary drainage [J]. Engineering Mechanics, 2023, 40(1): 100 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.07.0575
    [16]
    ZHOU Y D, ZHENG Q D, GUO S J. Nonlinear consolidation model of composite foundation with partially penetrated stone column [J]. Computers and Geotechnics, 2023, 161: 105621. doi: 10.1016/j.compgeo.2023.105621
    [17]
    梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1): 28 − 31.

    MEI Guoxiong, XIA Jun, MEI Ling. Terzaghi’s one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 28 − 31. (in Chinese)
    [18]
    陈余, 李传勋. 连续排水边界下考虑起始坡降的软黏土固结解[J]. 工程力学, 2021, 38(9): 161 − 170. doi: 10.6052/j.issn.1000-4750.2020.09.0656

    CHEN Yu, LI Chuanxun. Consolidation analysis of soft clay considering the threshold hydraulic gradient and a continuous drainage boundary [J]. Engineering Mechanics, 2021, 38(9): 161 − 170. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0656
    [19]
    ZHANG Y, YIN Y, ZONG M F, et al. A one-dimensional nonlinear consolidation analysis of double-layered soil with continuous drainage boundary [J]. Applied Sciences, 2023, 13(21): 11711. doi: 10.3390/app132111711
    [20]
    XIE K H, XIA C Q, AN R, et al. A study on one-dimensional consolidation of layered structured soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(7): 1081 − 1098. doi: 10.1002/nag.2477
    [21]
    KIM P, KIM H S, PAK C U, et al. Analytical solution for one-dimensional nonlinear consolidation of saturated multi-layered soil under time-dependent loading [J]. Journal of Ocean Engineering and Science, 2021, 6(1): 21 − 29. doi: 10.1016/j.joes.2020.04.004
    [22]
    陈征, 张峰, 陈益峰, 等. 排水通道分布式布设下双层地基平面应变固结分析[J]. 工程力学, 2020, 37(1): 135 − 144. doi: 10.6052/j.issn.1000-4750.2019.02.0056

    CHEN Zheng, ZHANG Feng, CHEN Yifeng, et al. Plane-strain consolidation analysis of double-layered ground with strip-shaped distributed drainage boundary [J]. Engineering Mechanics, 2020, 37(1): 135 − 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0056
    [23]
    李玉岐, 魏婕, 谢康和. 负孔压消散对坑底的回弹影响研究[J]. 长江科学院院报, 2005, 22(4): 52 − 55. doi: 10.3969/j.issn.1001-5485.2005.04.015

    LI Yuqi, WEI Jie, XIE Kanghe. Study on influence of dissipation of negative pore water pressure on heave of pit base [J]. Journal of Yangtze River Scientific Research Institute, 2005, 22(4): 52 − 55. (in Chinese) doi: 10.3969/j.issn.1001-5485.2005.04.015
    [24]
    ZHANG L S, WEI X. Responses of excavation base under influences of confined aquifer: An analytical approach [J]. Marine Georesources and Geotechnology, 2021, 39(2): 241 − 254. doi: 10.1080/1064119X.2019.1695028
    [25]
    ZHANG X Q, LI M G, CHEN J J. One-dimensional reverse consolidation model for basal soil from deep excavation based on the continuous drainage boundary [J]. International Journal of Geomechanics, 2023, 23(7): 04023105. doi: 10.1061/IJGNAI.GMENG-8611
    [26]
    BIOT M A. General theory of three-dimensional consolidation [J]. Journal of Applied Physics, 1941, 12(2): 155 − 164. doi: 10.1063/1.1712886
    [27]
    OSAIMI A E, CLOUGH G W. Pore-pressure dissipation during excavation [J]. Journal of the Geotechnical Engineering Division, 1979, 105(4): 481 − 498. doi: 10.1061/AJGEB6.0000785
    [28]
    应宏伟, 谢康和, 潘秋元, 等. 软粘土深基坑开挖时间效应的有限元分析[J]. 计算力学学报, 2000, 17(3): 349 − 354.

    YING Hongwei, XIE Kanghe, PAN Qiuyuan, et al. FEM analysis on time-effects of deep excavations in soft clay [J]. Chinese Journal of Computational Mechanics, 2000, 17(3): 349 − 354. (in Chinese)
    [29]
    李玉岐, 周健, 谢康和. 考虑渗流与变形耦合作用的基坑工程时间效应[J]. 水利学报, 2006, 37(6): 694 − 698.

    LI Yuqi, ZHOU Jian, XIE Kanghe. Time effect of excavation considering the coupling of seepage flow and soil deformation [J]. Journal of Hydraulic Engineering, 2006, 37(6): 694 − 698. (in Chinese)
    [30]
    丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009.

    DING Yongchun. Excavation-induced deformation and control in soft deposits [D]. Shanghai: Shanghai Jiaotong University, 2009. (in Chinese)
    [31]
    严国政. 常微分方程[M]. 北京: 科学出版社, 2012: 430.

    YAN Guozheng. Ordinary differential equations [M]. Beijing: Science Press, 2012: 430. (in Chinese)
    [32]
    ABATE J, WHITT W. A unified framework for numerically inverting Laplace transforms [J]. Informs Journal on Computing, 2006, 18(4): 408 − 421. doi: 10.1287/ijoc.1050.0137
    [33]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: Bottom-up construction of the central cylindrical shaft [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875 − 1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
    [34]
    田振, 顾倩燕. 大直径圆形深基坑基底回弹问题研究[J]. 岩土工程学报, 2006, 28(增刊1): 1360 − 1364.

    TIAN Zhen, GU Qianyan. Researches on heave of circular deep foundation pits with super diameters [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(Suppl 1): 1360 − 1364. (in Chinese)
    [35]
    李德宁. 上海环球金融中心塔楼基坑回弹变形研究[J]. 中国水运, 2016, 16(3): 338 − 340

    LIDening. Researches on foundation pit resilience deformation for Tower Part of Shanghai World Financial Centre [J]. China Water Transport, 2016, 16(3): 338 − 340.(in Chinese)
    [36]
    楼晓明, 李德宁, 刘建航. 深基坑坑底地基的回弹应力与回弹变形[J]. 土木工程学报, 2012, 45(4): 134 − 138.

    LOU Xiaoming, LI Dening, LIU Jianhang. Rebound stress and deformation below the bottom of deep excavations [J]. China Civil Engineering Journal, 2012, 45(4): 134 − 138. (in Chinese)
  • Related Articles

    [1]TONG Rui, FU Hao, SONG Er-xiang. ANALYTICAL SOLUTION OF ONE-DIMENSIONAL TRANSIENT HEAT CONDUCTION EQUATION AND ITS APPLICATION[J]. Engineering Mechanics, 2022, 39(8): 9-18. DOI: 10.6052/j.issn.1000-4750.2021.04.0304
    [2]ZHANG Lei, YANG Na. ANALYTICAL SOLUTION FOR MORTISE-TENON END WOODEN BEAM SUBJECTED TO UNIFORM LOAD[J]. Engineering Mechanics, 2017, 34(7): 51-60,78. DOI: 10.6052/j.issn.1000-4750.2016.02.0118
    [3]HONG Zhao-hui, LIU Run, LIU Wen-bin, YAN Shu-wang. ANALYTICAL SOLUTION OF PIPELINE GLOBAL BUCKLING WITH DOUBLE ARCH IMPERFECTIONS[J]. Engineering Mechanics, 2016, 33(3): 31-38. DOI: 10.6052/j.issn.1000-4750.2014.08.0697
    [4]YAO Shu-lin, WEN Min-jie. ANALYTICAL SOLUTIONS OF DYNAMIC RESPONSES OF A LINED TUNNEL IN VISCOELASTIC SOIL[J]. Engineering Mechanics, 2014, 31(3): 109-115. DOI: 10.6052/j.issn.1000-4750.2012.04.0222
    [5]CAO Zhi-gang, CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. AN ANALYTICAL SOLUTION TO TRAIN-INDUCED GROUND VIBRATION[J]. Engineering Mechanics, 2011, 28(10): 250-256.
    [6]LI Fa-xiong, NIE Jian-guo. ELASTIC ANALYTICAL SOLUTIONS OF SHEAR LAG EFFECT OF STEEL-CONCRETE COMPOSITE BEAM[J]. Engineering Mechanics, 2011, 28(9): 1-008.
    [7]CAI Song-bai, CHENG Xiang-yun, SHAO Xu-dong. AN ANALYTICAL SOLUTION FOR SHEAR LOG EFFECTS OF FLAT-ARCH-SHAPED BEAM BRIDGE[J]. Engineering Mechanics, 2003, 20(5): 82-86.
    [8]DING Ke-wei, TANG Li-min. ANALYTICAL SOLUTION OF THERMAL STRESSES FOR OPEN LAMINATED CYLINDRICAL SHELL[J]. Engineering Mechanics, 1999, 16(3): 1-6,49.
    [9]Fan Jiashen. ANALYTICAL SOLUTION FOR MODE Ⅲ DYNAMIC RUPTURE SUBJECTED TO NONLINEAR DAMPING[J]. Engineering Mechanics, 1997, 14(2): 52-58.
    [10]Zheng Jianjun. THE ANALYTICAL SOLUTIONS FOR ASYMMETIC STEADY VIBRATION OF CIRCULAR (ANNULAR) PLATES ON TWO-PARAMETERS FOUNDATION[J]. Engineering Mechanics, 1993, 10(2): 48-54.

Catalog

    Article Metrics

    Article views (52) PDF downloads (11) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return