Citation: | JIN Liu, HAN Cong-xi, LI Dong, DU Xiu-li. PRIDICTION OF SPLITTING TENSILE STRENGTH OF CONCRETE UPON MODIFIED FRACTURE ANALYSIS MODEL[J]. Engineering Mechanics, 2024, 41(7): 29-39, 98. DOI: 10.6052/j.issn.1000-4750.2022.04.0384 |
Numerical analysis is an important research method to avoid the shortcomings of experiments and to realize theoretical expectations. Based on the mesoscale numerical test method, the established intergranular failure mode-based three-dimensional meso-fracture theoretical analysis model of concrete is modified. The adopted numerical model of concrete is composed of mortar, interfaces and aggregates, which is consistent with the theoretical model. In order to simulate the mechanical behaviors of ordinary strength concrete, the plastic damage constitutive model is used to characterize the mechanical properties of mortar and interfaces, and aggregates are set as elastic spheres. A self-designed aggregate placement program is used to establish standard cubic specimens of three-dimensional model concrete with cross-sectional dimensions of 100 mm (1-graded), 150 mm (2-graded), 300 mm (3-graded) and 450 mm (4-graded). The theoretical model is improved by the splitting tensile loading numerical tests of standard cubic specimens under different interfacial strength conditions. A semi-theoretical and semi-empirical modified calculation formula for predicting the splitting tensile strength of different graded concrete is established. Compared with the results of numerical and physical tests, the modified theoretical model can effectively represent the variation of the macroscopic mechanical properties of concrete with the mechanical and structural properties of meso-component materials. The proposed theoretical model modification method based on overlapping effect analysis and structural effect analysis can lay a foundation for the subsequent establishment of semi-theoretical and semi-empirical prediction formula of concrete mechanical properties upon modified fracture analysis model.
[1] |
WU Z, ZHANG J, FANG Q, et al. Mesoscopic modelling of concrete material under static and dynamic loadings: A review [J]. Construction and Building Materials, 2021, 278(10): 122419.
|
[2] |
李冬, 韩丛熹, 金浏, 等. 一种基于绕晶失效模式的混凝土断裂分析模型[J]. 工程力学, 2024, 41(6): 19 − 29, 43. doi: 10.6052/j.issn.1000-4750.2022.04.0383
LI Dong, HAN Congxi, JIN Liu, et al. An intergranular failure mode-based fracture analysis model of concrete [J]. Engineering Mechanics, 2024, 41(6): 19 − 29, 43. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.04.0383
|
[3] |
杜修力, 金浏. 混凝土细观分析方法与应用 [M]. 北京: 科学出版社, 2021.
DU Xiuli, JIN Liu. Meso analysis method and application of concrete [M]. Beijing: Science Press, 2021. (in Chinese)
|
[4] |
杜修力, 金浏. 细观分析方法在混凝土物理/力学性质研究方面的应用[J]. 水利学报, 2016, 47(3): 355 − 371. doi: 10.13243/j.cnki.slxb.20151111
DU Xiuli, JIN Liu. Applications of meso-scale analysis methods on the study of the physical/mechanical properties of concrete [J]. Journal of Hydraulic Engineering, 2016, 47(3): 355 − 371. (in Chinese) doi: 10.13243/j.cnki.slxb.20151111
|
[5] |
ROELFSTRA P E, SADOUKI H, WITTMANN F H. The numerical concrete [J]. Materials and Structures, 1985, 18: 327 − 335. doi: 10.1007/BF02472402
|
[6] |
SCHLANGEN E, GARBOCZI E J. Fracture simulations of concrete using lattice model computational aspects [J]. Engineering Fracture Mechanics, 1997, 57(2): 319 − 332.
|
[7] |
VAN MIER J G M, VAN VLIET M R A. Experimentation, numerical simulation and the role of engineering judgment in the fracture mechanics of concrete and concrete structures [J]. Construction and Building Materials, 1999, 13(1/2): 3 − 14.
|
[8] |
ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model [J]. Constructions and Building Materials, 2002, 16(8): 453 − 463. doi: 10.1016/S0950-0618(02)00096-X
|
[9] |
ZHU W C, TANG C A, WANG S Y. Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete [J]. Structural Engineering and Mechanics, 2005, 19(5): 519 − 533. doi: 10.12989/sem.2005.19.5.519
|
[10] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47 − 65. doi: 10.1680/geot.1979.29.1.47
|
[11] |
KAWAI T. New element models in discrete structural analysis [J]. Journal of the Society of Naval Architects of Japan, 1977, 141: 174 − 180.
|
[12] |
WANG Z M, KWAN A K H, CHAN H C. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh [J]. Computers and Structures, 1999, 70(5): 533 − 544. doi: 10.1016/S0045-7949(98)00177-1
|
[13] |
杨贞军, 黄宇劼, 尧锋, 等. 基于粘结单元的三维随机细观混凝土离散断裂模拟[J]. 工程力学, 2020, 37(8): 158 − 166. doi: 10.6052/j.issn.1000-4750.2019.09.0559
YANG Zhenjun, HUANG Yujie, YAO Feng, et al. Three-dimensional meso-scale cohesive fracture modeling of concrete using a python script in Abaqus [J]. Engineering Mechanics, 2020, 37(8): 158 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.09.0559
|
[14] |
王立成, 邢立坤, 宋玉普. 混凝土劈裂抗拉强度和弯曲抗压强度尺寸效应的细观数值分析[J]. 工程力学, 2014, 31(10): 69 − 76. doi: 10.6052/j.issn.1000-4750.2013.03.0259
WANG Licheng, XING Likun, SONG Yupu. Mesoscale modeling on size effect of splitting tensile strength and flexural compressive strength of concrete [J]. Engineering Mechanics, 2014, 31(10): 69 − 76. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0259
|
[15] |
ZHENG B, LI T C, QI H J, et al. 3D meso-scale simulation of chloride ion transportation in cracked concrete considering aggregate morphology [J]. Construction and Building Materials, 2022, 326: 126632.
|
[16] |
JIN L, LI J, YU W X, et al. Mesoscopic simulations on the strength and size effect of concrete under biaxial loading [J]. Engineering Fracture Mechanics, 2021, 253: 107870. doi: 10.1016/j.engfracmech.2021.107870
|
[17] |
SONG Z H, LU Y. Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data [J]. International Journal of Impact Engineering, 2012, 46(6): 41 − 55.
|
[18] |
JIN L, YU W X, LI D, et al. Numerical and theoretical investigation on the size effect of concrete compressive strength considering the maximum aggregate size [J]. International Journal of Mechanical Sciences, 2021, 192: 106130. doi: 10.1016/j.ijmecsci.2020.106130
|
[19] |
GB/T 50081−2019, 混凝土物理力学性能试验方法标准 [S]. 北京: 中国建筑工业出版社, 2019.
GB/T 50081−2019, Standard for test methods of concrete physical ang mechanical properties [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
|
[20] |
DL/T 5330−2015, 水工混凝土配合比设计规程 [S]. 北京: 中国电力出版社, 2015.
DL/T 5330−2015, Code for mix design of hydraulic concrete [S] . Beijing: China Electric Power Press, 2015. (in Chinese)
|
[21] |
ELICES M, ROCCO C G. Effect of aggregate size on the fracture and mechanical properties of a simple concrete [J]. Engineering Fracture Mechanics, 2008, 75(13): 3839 − 3851. doi: 10.1016/j.engfracmech.2008.02.011
|
[22] |
ROSSELLÓ C, ELICES M. Fracture of model concrete 1. Types of fracture and crack path [J]. Cement and Concrete Research, 2004, 34(8): 1441 − 1450. doi: 10.1016/j.cemconres.2004.01.028
|
[23] |
ROSSELLÓ C, ELICES M, GUINEA G V. Fracture of model concrete: 2. Fracture energy and characteristic length [J]. Cement and Concrete Research, 2006, 36(7): 1345 − 1353. doi: 10.1016/j.cemconres.2005.04.016
|
[24] |
LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892 − 900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
|
[25] |
徐磊, 崔姗姗, 姜磊, 等. 基于双重网格的混凝土自适应宏细观协同有限元分析方法[J]. 工程力学, 2022, 39(4): 12. doi: 10.6052/j.issn.1000-4750.2021.08.0610
XU Lei, CUI Shanshan, JIANG lei, et al. Adaptive macro-meso-scale concurrent finite element analysis approach of concrete using dual mesh [J]. Engineering Mechanics, 2022, 39(4): 12. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.08.0610
|
[26] |
李健, 金浏, 余文轩, 等. 混凝土动态双轴压缩强度准则细观研究[J]. 工程力学, 2023, 40(11): 71 − 80. doi: 10.6052/j.issn.1000-4750.2022.01.0091
LI Jian, JIN Liu, YU Wenxuan, et al. Meso-simulation on dynamic biaxial compressive strength criterion of concrete [J]. Engineering Mechanics, 2023, 40(11): 71 − 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2022.01.0091
|
[27] |
JIN L, ZHANG S, LI D, et al. A combined experimental and numerical analysis on the seismic behavior of short reinforced concrete columns with different structural sizes and axial compression ratios [J]. International Journal of Damage Mechanics, 2018, 27: 1416 − 1447. doi: 10.1177/1056789517735679
|
[28] |
LI D, JIN L, DU X L, et al. Determination of intergranular and transgranular failure of mesoscale model concrete under mode-I fracture [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102551. doi: 10.1016/j.tafmec.2020.102551
|
[29] |
JOHNSTON C D. Strength and deformation of concrete in uniaxial tension and compression [J]. Magazine of Concrete Research, 1970, 22(70): 5 − 16. doi: 10.1680/macr.1970.22.70.5
|
[30] |
杜敏. 混凝土与约束混凝土柱尺寸效应研究 [D]. 北京: 北京工业大学, 2017.
DU Min. Research on size effect of concrete and stirrup-confined concrete columns [D]. Beijing: Beijing University of Technology, 2017. (in Chinese)
|
[31] |
周红. 混凝土强度尺寸效应的实验研究 [D]. 大连: 大连理工大学, 2010.
ZHOU Hong. Experimental study on size effect on concrete strength [D]. Dalian: Dalian University of Technology, 2010. (in Chinese)
|
[32] |
TASDEMIR C, TASDEMIR M A, LYDON F D, et al. Effects silica fume and aggregate size on the brittleness of concrete [J]. Cement and Concrete Research, 1996, 26(1): 63 − 68. doi: 10.1016/0008-8846(95)00180-8
|