LIANG Yan-ping, FENG De-cheng, REN Xiao-dan. RELIABILITY ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL UNDER ACCIDENTAL INTERNAL PRESSURE[J]. Engineering Mechanics, 2023, 40(8): 202-212. DOI: 10.6052/j.issn.1000-4750.2021.12.0006
Citation: LIANG Yan-ping, FENG De-cheng, REN Xiao-dan. RELIABILITY ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL UNDER ACCIDENTAL INTERNAL PRESSURE[J]. Engineering Mechanics, 2023, 40(8): 202-212. DOI: 10.6052/j.issn.1000-4750.2021.12.0006

RELIABILITY ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL UNDER ACCIDENTAL INTERNAL PRESSURE

More Information
  • Received Date: December 30, 2021
  • Revised Date: April 27, 2022
  • Available Online: May 11, 2022
  • The reliability of prestressed concrete containment vessels (PCCVs) subjected to the accidental internal pressures is analyzed. The analysis procedure is based on Monte Carlo finite element (FE) simulation. On the one hand, according to the probability conservation principle, the actual probability distribution of the response is characterized by the finite number of samples; on the other hand, the FE analysis combines the multi-layered shell element, the concrete softened damage constitution, and the secant stiffness algorithm in one framework to simulate the nonlinear behavior of the PCCV accurately and efficiently. Finally, the PCCV tested at Sandia National Laboratories (SNL) is studied. The comparison of the simulated displacements with the test ones illustrates that the FE model and parameters are basically reasonable. Considering the material parameters as random variables and the global strain as the failure indicator, the probability distribution of the response is obtained by 200 FE samples, and the curve of the failure probability with the internal pressure is obtained. The results show that, the simulated failure probability reaches 72.03% and 68.78% under the functional failure and structural failure internal pressures got in the test, respectively. This is consistent with the test results.
  • [1]
    HESSHEIMER M F, KLAMERUS E W, LAMBERT L D, et al. Overpressurization test of a 1∶4-scale prestressed concrete containment vessel model. technical report NUREGCR6810 [R]. Washington D C, USA: Nuclear Regulatory Commission, 2003.
    [2]
    钱稼茹, 赵作周, 段安, 等. CNP1000 核电厂安全壳1∶10 模型拟动力试验[J]. 土木工程学报, 2007, 40(6): 7 − 13. doi: 10.3321/j.issn:1000-131X.2007.06.002

    QIAN Jiaru, ZHAO Zuozhou, DUAN An, et al. Pseudo-dynamic tests of a 1∶10 model of pre-stressed concrete containment vessel for CNP1000 nuclear power plant [J]. China Civil Engineering Journal, 2007, 40(6): 7 − 13. (in Chinese) doi: 10.3321/j.issn:1000-131X.2007.06.002
    [3]
    王晓磊, 侯钢领, 吕大刚. 某核电站安全壳1∶15模型振动台试验[J]. 工程力学, 2014, 31(增刊): 249 − 252. doi: 10.6052/j.issn.1000-4750.2013.04.S048

    WANG Xiaolei, HOU Gangling, LYU Dagang. Shaking table tests of a 1∶15 reinforced concrete containment vessel model for a nuclear power plant [J]. Engineering Mechanics, 2014, 31(Suppl): 249 − 252. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.04.S048
    [4]
    陈勤, 钱稼茹. 内压荷载下安全壳1∶10 模型结构非线性有限元分析[J]. 工程力学, 2002, 19(6): 73 − 77. doi: 10.3969/j.issn.1000-4750.2002.06.015

    CHEN Qin, QIAN Jiaru. Nonlinear finite element analysis of 1∶10 containment model structure subjected to internal pressure [J]. Engineering Mechanics, 2002, 19(6): 73 − 77. (in Chinese) doi: 10.3969/j.issn.1000-4750.2002.06.015
    [5]
    GHAVAMIAN S, COURTOIS A, VALFORT J L. Mechanical simulations of SANDIA II tests OECD ISP 48 benchmark [J]. Nuclear Engineering and Design, 2007, 237: 1406 − 1418. doi: 10.1016/j.nucengdes.2006.10.012
    [6]
    阳涛, 杨哲飚, 陆新征, 等. 核电厂安全壳结构模型碳纤维布加固试验研究[J]. 工程力学, 2017, 34(8): 144 − 153. doi: 10.6052/j.issn.1000-4750.2016.08.0604

    YANG Tao, YANG Zhebiao, LU Xinzheng, et al. Experimental study of nuclear power plant concrete containment strengthened with externally wrapped carbon fiber reinforced polymer sheets [J]. Engineering Mechanics, 2017, 34(8): 144 − 153. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0604
    [7]
    SHOKOOHFAR A, RAHAI A. Nonlinear analysis of pre-stressed concrete containment vessel (PCCV) using the damage plasticity model [J]. Nuclear Engineering and Design, 2016, 298: 41 − 50. doi: 10.1016/j.nucengdes.2015.12.019
    [8]
    WU J Y, HAO D D, LI W S, et al. Numerical modeling and simulation of a prestressed concrete containment vessel [J]. Annals of Nuclear Energy, 2018, 121: 269 − 283. doi: 10.1016/j.anucene.2018.06.039
    [9]
    HONG P L. Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building [J]. Nuclear Engineering and Design, 2011, 241: 515 − 525. doi: 10.1016/j.nucengdes.2010.11.008
    [10]
    HU H T, LIN Y H. Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure [J]. Pressure Vessels and Piping, 2006, 83: 161 − 167. doi: 10.1016/j.ijpvp.2006.02.030
    [11]
    CHAKRABORTY M K, ACHARYA S, PISHARADY A S, et al. Assessment of ultimate load capacity of concrete containment structures against structural collapse [J]. Nuclear Engineering and Design, 2017, 323: 417 − 426. doi: 10.1016/j.nucengdes.2017.06.046
    [12]
    段安, 钱稼茹. CNP1000核电厂安全壳模型结构抗震安全分析[J]. 工程力学, 2009, 26(4): 153 − 157.

    DUAN An, QIAN Jiaru. Aseismic safety analysis of a containment vessel model for CNP1000 nuclear power plant [J]. Engineering Mechanics, 2009, 26(4): 153 − 157. (in Chinese)
    [13]
    PANDEY M D. Reliability-based assessment of integrity of bonded prestressed concrete containment structures [J]. Nuclear Engineering and Design, 1997, 176: 247 − 260. doi: 10.1016/S0029-5493(97)00148-9
    [14]
    PRINJA N K, OGUNBADEJO A, SADEGHI J, et al. Structural reliability of pre-stressed concrete containments [J]. Nuclear Engineering and Design, 2017, 323: 235 − 244. doi: 10.1016/j.nucengdes.2016.11.036
    [15]
    金松, 李鑫波, 贡金鑫. 严重事故下核电厂安全壳结构概率性能评价[J]. 工程力学, 2021, 38(6): 103 − 112. doi: 10.6052/j.issn.1000-4750.2020.07.0437

    JIN Song, LI Xinbo, GONG Jinxin. Probabilistic performance evaluation of nuclear containment structure subjected to severe accidents. Engineering Mechanics [J]. Engineering Mechanics, 2021, 38(6): 103 − 112. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0437
    [16]
    HELTON J C, JOHNSON J D, SALLABERRY C J, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis [J]. Reliability Engineering and System Safety, 2006, 91: 1175 − 1209. doi: 10.1016/j.ress.2005.11.017
    [17]
    LI J, CHEN J B. The principle of preservation of probability and the generalized density evolution equation [J]. Structural Safety, 2008, 30(1): 65 − 77. doi: 10.1016/j.strusafe.2006.08.001
    [18]
    LIANG Y P, FENG D C, REN X. High-fidelity numerical analysis of the damage and failure mechanisms of a prestressed concrete containment vessel under internal pressure [J]. Nuclear Engineering and Design, 2021, 383: 111439. doi: 10.1016/j.nucengdes.2021.111439
    [19]
    李杰. 工程结构可靠性分析原理 [M]. 北京: 科学出版社, 2021.

    LI Jie. Fundamental of structural reliability analysis [M]. Beijing: China Science Press, 2021. (in Chinese)
    [20]
    CHEN J B, LI J. Dynamic response and reliability analysis of non-linear stochastic structures [J]. Probabilistic Engineering Mechanics, 2005, 20(1): 33 − 44. doi: 10.1016/j.probengmech.2004.05.006
    [21]
    叶列平, 陆新征, 马千里, 等. 混凝土结构抗震非线性分析模型、方法及算例[J]. 工程力学, 2006, 23(增刊): 131 − 140.

    YE Lieping, LU Xinzheng, MA Qianli, et al. Nonlinear analytical models, methods and examples for concrete structures subjected to earthquake loading [J]. Engineering Mechanics, 2006, 23(Suppl): 131 − 140. (in Chinese)
    [22]
    林旭川, 陆新征, 缪志伟, 等. 基于分层壳单元的RC核心筒结构有限元分析和工程应用[J]. 土木工程学报, 2009, 42(3): 51 − 56.

    LIN Xuchuan, LU Xinzheng, MIAO Zhiwei, et al. Finite element analysis and engineering application of RC core-tube structures based on the multi-layer shell elements [J]. China Civil Engineering Journal, 2009, 42(3): 51 − 56. (in Chinese)
    [23]
    张军锋, 裴昊, 朱冰, 等. 考虑材料非线性的RC双曲冷却塔风致破坏过程[J]. 工程力学, 2021, 38(3): 228 − 238. doi: 10.6052/j.issn.1000-4750.2020.05.0324

    ZHANG Junfeng, PEI Hao, ZHU Bing, et al. Wind-induced failure process of RC hyperbolic cooling towers considering the material nonlinearity [J]. Engineering Mechanics, 2021, 38(3): 228 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0324
    [24]
    陶慕轩, 赵继之. 采用通用有限元程序的弥散裂缝模型和分层壳单元模拟钢筋混凝土构件裂缝宽度[J]. 工程力学, 2020, 37(4): 165 − 177. doi: 10.6052/j.issn.1000-4750.2019.07.0342

    TAO Muxuan, ZHAO Jizhi. Prediction the creek width of reinforced concrete structural members using the smeared crack model and layered shell elements in general-purpose finite element packages [J]. Engineering Mechanics, 2020, 37(4): 165 − 177. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.07.0342
    [25]
    FENG D C, REN X, LI J. Softened damage-plasticity model for analysis of cracked reinforced concrete structures [J]. Journal of Structural Engineering, 2018, 144(6): 04018044. doi: 10.1061/(ASCE)ST.1943-541X.0002015
    [26]
    FENG D C, REN X, LI J. Cyclic behavior modeling of reinforced concrete shear walls based on softened damage-plasticity model [J]. Engineering Structures, 2018, 166: 363 − 375. doi: 10.1016/j.engstruct.2018.03.085
    [27]
    LIANG Y P, REN X, FENG D C. Efficient stochastic finite element analysis of irregular wall structures with inelastic random field properties over manifold [J]. Computational Mechanics, 2022, 69(1): 95 − 111. doi: 10.1007/s00466-021-02084-4
    [28]
    FENG D C, LI J. Stochastic nonlinear behavior of reinforced concrete frames. ii: Numerical simulation [J]. Journal of Structural Engineering, 2016, 142(3): 04015163. doi: 10.1061/(ASCE)ST.1943-541X.0001443
    [29]
    FENG D C, XIE S C, LI Y, et al. Time-dependent reliability-based redundancy assessment of deteriorated RC structures against progressive collapse considering corrosion effect [J]. Structure Safety, 2021, 89: 102061. doi: 10.1016/j.strusafe.2020.102061
    [30]
    FENG D C, XIE S C, XU J, et al. Robustness quantification of reinforced concrete structures subjected to progressive collapse via the probability density evolution method [J]. Engineering Structures, 2020, 202: 109877. doi: 10.1016/j.engstruct.2019.109877
    [31]
    LI J, REN X. Stochastic damage model for concrete based on energy equivalent strain [J]. International Journal of Solids and Structure, 2009, 49(11/12): 2407 − 2419.
    [32]
    REN X, LI J. Two-level consistent secant operators for cyclic loading of structures [J]. Journal of Engineering Mechanics, 2018, 144(8): 04018065. doi: 10.1061/(ASCE)EM.1943-7889.0001494
    [33]
    JCSS. JESS probabilistic model code-Part 3: Material properties [R]. Joint Committee on Structural Safety, 2000.
    [34]
    CHEN J B, YANG J Y, LI J. A GF-discrepancy for point selection in stochastic seismic response analysis of structures with uncertain parameters [J]. Structural Safety, 2016, 59: 20 − 31. doi: 10.1016/j.strusafe.2015.11.001
    [35]
    Regulatory guide 1.216, Containment structural integrity evaluation for internal pressure loadings above design-basis pressure [S]. Rockville, U. S.: Nuclear Regulatory Commission, 2010.
    [36]
    DAMERON R A, HANSEN B E, HESSHEIMER M F. Analysis of a 1∶4-scale prestressed concrete containment vessel model for severe accident thermal and pressure loading [C]// 18th International Conference on Structural Mechanics in Reactor Technology. Beijing: SMiRT 18, 2005.
    [37]
    MATHET E, HESSHEIMER M F. An international standard problem: Analysis of 1∶4 scale prestressed concrete containment vessel model under severe accident conditions [C]// 18th International Conference on Structural Mechanics in Reactor Technology. Beijing: SMiRT 18, 2005.
    [38]
    赵国藩, 金伟良, 龚金鑫. 结构可靠度理论 [M]. 北京: 中国建筑工业出版社, 2000.

    ZHAO Guofan, JIN Weiliang, GONG Jinxin. Structure reliability theory [M]. Beijing: China Architecture & Building Press, 2000. (in Chinese)
  • Cited by

    Periodical cited type(1)

    1. 李鑫波,贡金鑫. 核安全壳在钢衬里锈蚀情况下的概率安全分析. 哈尔滨工程大学学报. 2024(12): 2281-2289 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (364) PDF downloads (100) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return