Citation: | WEI Kai, ZHAO Wen-yu, HONG Jie, QIN Shun-quan. INVESTIGATION OF THE WAVE SLAMMING LOAD ON THE SQUARE PIER SUBJECTED TO OBLIQUE PLUNGING BREAKING WAVES[J]. Engineering Mechanics, 2023, 40(5): 41-48. DOI: 10.6052/j.issn.1000-4750.2021.10.0830 |
[1] |
季新然, 邹丽, 柳淑学, 等. 多向不规则波浪作用下群墩结构所受波浪力的实验研究[J]. 工程力学, 2019, 36(10): 238 − 243. doi: 10.6052/j.issn.1000-4750.2018.07.0399
JI Xinran, ZOU Li, LIU Shuxue, et al. Experimental study on the multidirectional wave force on an array of cylinders [J]. Engineering Mechanics, 2019, 36(10): 238 − 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0399
|
[2] |
魏凯, 周聪, 徐博. 跨海桥梁高桩承台波浪冲击荷载概率模型[J]. 工程力学, 2020, 37(6): 216 − 224. doi: 10.6052/j.issn.1000-4750.2019.08.0500
WEI Kai, ZHOU Cong, XU Bo. Probability model of wave impact load on the elevated pile cap for sea-crossing bridges [J]. Engineering Mechanics, 2020, 37(6): 216 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0500
|
[3] |
华旭刚, 邓武鹏, 陈政清, 等. 水流作用下双圆柱墩混凝土梁桥的动力响应实测与数值模拟[J]. 工程力学, 2021, 38(1): 40 − 51. doi: 10.6052/j.issn.1000-4750.2020.03.0143
HUA Xugang, DENG Wupeng, CHEN Zhengqing, et al. Numerical simulation and field measurement of dynamic responses of bridges with twin circular-cylinder piers subjected to water flow [J]. Engineering Mechanics, 2021, 38(1): 40 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0143
|
[4] |
张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138 − 143, 171. doi: 10.6052/j.issn.1000-4750.2017.04.0299
ZHANG Jiarui, WEI Kai, QIN Shunquan. An Bayesian updating based probabilistic model for the dynamic response of deep-water bridge piers under wave loading [J]. Engineering Mechanics, 2018, 35(8): 138 − 143, 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0299
|
[5] |
CUOMO G, ALLSOP W, BRUCE T, et al. Breaking wave loads at vertical seawalls and breakwaters [J]. Coastal Engineering, 2010, 57: 424 − 439. doi: 10.1016/j.coastaleng.2009.11.005
|
[6] |
HONG J, WEI K, SHEN Z H, et al. Experimental study of breaking wave loads on elevated pile cap with rectangular cross-section [J]. Ocean Engineering, 2021, 227: 108878. doi: 10.1016/j.oceaneng.2021.108878
|
[7] |
WIENKE J, OUMERACI H. Breaking wave impact force on a vertical and inclined slender pile – theoretical and large-scale model investigations [J]. Coastal Engineering, 2005, 52(5): 435 − 462. doi: 10.1016/j.coastaleng.2004.12.008
|
[8] |
MA Y X, TAI B, DONG G H, et al. Experimental study of plunging solitary waves impacting a vertical slender cylinder [J]. Ocean Engineering, 2019, 202: 107191.
|
[9] |
KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location [J]. Ocean Engineering, 2016, 128: 105 − 115. doi: 10.1016/j.oceaneng.2016.10.025
|
[10] |
CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure s vibration on breaking wave impact [J]. Ocean Engineering, 2015, 96: 8 − 20. doi: 10.1016/j.oceaneng.2014.11.012
|
[11] |
SAWARAGI T, NOCHINO M. Impact forces of nearly breaking waves on a vertical circular cylinder [J]. Coastal Engineering in Japan, 1984, 27(1): 249 − 263. doi: 10.1080/05785634.1984.11924391
|
[12] |
CHAN E S, MELVILLE W K. Plunging wave forces on surface-piercing structures [J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(2): 92 − 100. doi: 10.1115/1.3257093
|
[13] |
赵文玉, 魏凯, 姜沫臣, 等. 破碎波荷载对比分析及计算研究[C]. 北京: 工程力学杂志社, 2021: 148 − 151.
ZHAO Wenyu, WEI Kai, JIANG Mochen, et al. Comparative analysis and calculation of breaking wave load [C]. Beijing: Journal of Engineering Mechanics, 2021: 148 − 151. (in Chinese)
|
[14] |
GODA Y, HARANAKA S, KITAHATA M. Study of impulsive breaking wave forces on piles [R]. Yokosuka, Japan : Port and Harbour Research Institute, Ministry of Transport, 1967.
|
[15] |
IRSCHIK K, SPARBOOM U, OUMERACI H. Breaking wave characteristics for the loading of a slender pile [C]. Cardiff, Wales: Coastal Engineering, 2003: 1341 − 1352.
|
[16] |
VON KARMAN T. The impact on seaplane floats during landing [R]. Washington DC: National Advisory Committee for Aeronautics, 1929.
|
[17] |
WAGNER H. Über stoß und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193 − 215.
|
[18] |
赵林岳. 二维楔形体入水问题的解析解研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
ZHAO Linyue. Analytical research on 2D water impact problem of wedge body [D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
|
[19] |
KOROBKIN A A. Analytical models of water impact [J]. European Journal of Applied Mathematics, 2004, 15: 821 − 838. doi: 10.1017/S0956792504005765
|
[20] |
XU B, WEI K, QIN S Q, et al. Experimental study of wave loads on elevated pile cap of pile group foundation for sea-crossing bridges [J]. Ocean Engineering, 2020, 197: 106896. doi: 10.1016/j.oceaneng.2019.106896
|
[21] |
BIHS H, CHELLA M A, KAMATH A, et al. Numerical investigation of focused waves and their interaction with a vertical cylinder using REEF3D [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(4): 1 − 8.
|
[22] |
CHEN X X, HOFLAND B, MOLENAAR W, et al. Use of impulses to determine the reaction force of a hydraulic structure with an overhang due to wave impact [J]. Coastal Engineering, 2019, 147: 75 − 88. doi: 10.1016/j.coastaleng.2019.02.003
|
[23] |
JOSE J, PODRAZKA O, OBHRAI C, et al. Methods for analysing wave slamming loads on truss structures used in offshore wind applications based on experimental data [J]. International Journal of Offshore and Polar Engineering, 2016, 26(2): 100 − 168. doi: 10.17736/ijope.2016.mkr05
|
[24] |
SUJA-THAUVIN L, KROKSTAD J R, BACHYNSKI E E, et al. Experimental results of a multimode monopile offshore wind turbine support structure subjected to steep and breaking irregular waves [J]. Ocean Engineering, 2017, 146(5): 339 − 351.
|