WEI Kai, ZHAO Wen-yu, HONG Jie, QIN Shun-quan. INVESTIGATION OF THE WAVE SLAMMING LOAD ON THE SQUARE PIER SUBJECTED TO OBLIQUE PLUNGING BREAKING WAVES[J]. Engineering Mechanics, 2023, 40(5): 41-48. DOI: 10.6052/j.issn.1000-4750.2021.10.0830
Citation: WEI Kai, ZHAO Wen-yu, HONG Jie, QIN Shun-quan. INVESTIGATION OF THE WAVE SLAMMING LOAD ON THE SQUARE PIER SUBJECTED TO OBLIQUE PLUNGING BREAKING WAVES[J]. Engineering Mechanics, 2023, 40(5): 41-48. DOI: 10.6052/j.issn.1000-4750.2021.10.0830

INVESTIGATION OF THE WAVE SLAMMING LOAD ON THE SQUARE PIER SUBJECTED TO OBLIQUE PLUNGING BREAKING WAVES

More Information
  • Received Date: October 26, 2021
  • Revised Date: April 06, 2022
  • Available Online: April 22, 2022
  • The piers of coastal bridges often suffer from the slamming of breaking waves, and particularly the slamming load of plunging breaking waves threatens the structure safety. The plunging wave slamming load on square piers was studied by both theoretical and experimental investigation. Based on the empirical calculation formula of structural slamming load and MLM theoretical model, a theoretical calculation model of plunging wave slamming load on square section pier is established. The relationship between slamming angle and slamming load is explored by the plunging wave breaking flume test. The effectiveness of the theoretical model is verified by comparing the slamming pressure-time history of the square pier section under different slamming angles. Combined with the test and theoretical model, the range of the curling factor of the square pier subjected to different slamming angles is determined. The results show that, a smaller included angle between the slamming direction of plunging breaking wave and the water facing the axial direction of the square pier leads to larger slamming load, and the theoretical model presented in this paper can well describe the variation of slamming pressure-time history with slamming angle, also the variation formula of curling factor of square section with slamming angle is obtained according to the experimental results.
  • [1]
    季新然, 邹丽, 柳淑学, 等. 多向不规则波浪作用下群墩结构所受波浪力的实验研究[J]. 工程力学, 2019, 36(10): 238 − 243. doi: 10.6052/j.issn.1000-4750.2018.07.0399

    JI Xinran, ZOU Li, LIU Shuxue, et al. Experimental study on the multidirectional wave force on an array of cylinders [J]. Engineering Mechanics, 2019, 36(10): 238 − 243. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.07.0399
    [2]
    魏凯, 周聪, 徐博. 跨海桥梁高桩承台波浪冲击荷载概率模型[J]. 工程力学, 2020, 37(6): 216 − 224. doi: 10.6052/j.issn.1000-4750.2019.08.0500

    WEI Kai, ZHOU Cong, XU Bo. Probability model of wave impact load on the elevated pile cap for sea-crossing bridges [J]. Engineering Mechanics, 2020, 37(6): 216 − 224. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0500
    [3]
    华旭刚, 邓武鹏, 陈政清, 等. 水流作用下双圆柱墩混凝土梁桥的动力响应实测与数值模拟[J]. 工程力学, 2021, 38(1): 40 − 51. doi: 10.6052/j.issn.1000-4750.2020.03.0143

    HUA Xugang, DENG Wupeng, CHEN Zhengqing, et al. Numerical simulation and field measurement of dynamic responses of bridges with twin circular-cylinder piers subjected to water flow [J]. Engineering Mechanics, 2021, 38(1): 40 − 51. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0143
    [4]
    张家瑞, 魏凯, 秦顺全. 基于贝叶斯更新的深水桥墩波浪动力响应概率模型[J]. 工程力学, 2018, 35(8): 138 − 143, 171. doi: 10.6052/j.issn.1000-4750.2017.04.0299

    ZHANG Jiarui, WEI Kai, QIN Shunquan. An Bayesian updating based probabilistic model for the dynamic response of deep-water bridge piers under wave loading [J]. Engineering Mechanics, 2018, 35(8): 138 − 143, 171. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.04.0299
    [5]
    CUOMO G, ALLSOP W, BRUCE T, et al. Breaking wave loads at vertical seawalls and breakwaters [J]. Coastal Engineering, 2010, 57: 424 − 439. doi: 10.1016/j.coastaleng.2009.11.005
    [6]
    HONG J, WEI K, SHEN Z H, et al. Experimental study of breaking wave loads on elevated pile cap with rectangular cross-section [J]. Ocean Engineering, 2021, 227: 108878. doi: 10.1016/j.oceaneng.2021.108878
    [7]
    WIENKE J, OUMERACI H. Breaking wave impact force on a vertical and inclined slender pile – theoretical and large-scale model investigations [J]. Coastal Engineering, 2005, 52(5): 435 − 462. doi: 10.1016/j.coastaleng.2004.12.008
    [8]
    MA Y X, TAI B, DONG G H, et al. Experimental study of plunging solitary waves impacting a vertical slender cylinder [J]. Ocean Engineering, 2019, 202: 107191.
    [9]
    KAMATH A, CHELLA M A, BIHS H, et al. Breaking wave interaction with a vertical cylinder and the effect of breaker location [J]. Ocean Engineering, 2016, 128: 105 − 115. doi: 10.1016/j.oceaneng.2016.10.025
    [10]
    CHOI S J, LEE K H, GUDMESTAD O T. The effect of dynamic amplification due to a structure s vibration on breaking wave impact [J]. Ocean Engineering, 2015, 96: 8 − 20. doi: 10.1016/j.oceaneng.2014.11.012
    [11]
    SAWARAGI T, NOCHINO M. Impact forces of nearly breaking waves on a vertical circular cylinder [J]. Coastal Engineering in Japan, 1984, 27(1): 249 − 263. doi: 10.1080/05785634.1984.11924391
    [12]
    CHAN E S, MELVILLE W K. Plunging wave forces on surface-piercing structures [J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(2): 92 − 100. doi: 10.1115/1.3257093
    [13]
    赵文玉, 魏凯, 姜沫臣, 等. 破碎波荷载对比分析及计算研究[C]. 北京: 工程力学杂志社, 2021: 148 − 151.

    ZHAO Wenyu, WEI Kai, JIANG Mochen, et al. Comparative analysis and calculation of breaking wave load [C]. Beijing: Journal of Engineering Mechanics, 2021: 148 − 151. (in Chinese)
    [14]
    GODA Y, HARANAKA S, KITAHATA M. Study of impulsive breaking wave forces on piles [R]. Yokosuka, Japan : Port and Harbour Research Institute, Ministry of Transport, 1967.
    [15]
    IRSCHIK K, SPARBOOM U, OUMERACI H. Breaking wave characteristics for the loading of a slender pile [C]. Cardiff, Wales: Coastal Engineering, 2003: 1341 − 1352.
    [16]
    VON KARMAN T. The impact on seaplane floats during landing [R]. Washington DC: National Advisory Committee for Aeronautics, 1929.
    [17]
    WAGNER H. Über stoß und gleitvorgänge an der oberfläche von flüssigkeiten [J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193 − 215.
    [18]
    赵林岳. 二维楔形体入水问题的解析解研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.

    ZHAO Linyue. Analytical research on 2D water impact problem of wedge body [D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
    [19]
    KOROBKIN A A. Analytical models of water impact [J]. European Journal of Applied Mathematics, 2004, 15: 821 − 838. doi: 10.1017/S0956792504005765
    [20]
    XU B, WEI K, QIN S Q, et al. Experimental study of wave loads on elevated pile cap of pile group foundation for sea-crossing bridges [J]. Ocean Engineering, 2020, 197: 106896. doi: 10.1016/j.oceaneng.2019.106896
    [21]
    BIHS H, CHELLA M A, KAMATH A, et al. Numerical investigation of focused waves and their interaction with a vertical cylinder using REEF3D [J]. Journal of Offshore Mechanics and Arctic Engineering, 2017, 139(4): 1 − 8.
    [22]
    CHEN X X, HOFLAND B, MOLENAAR W, et al. Use of impulses to determine the reaction force of a hydraulic structure with an overhang due to wave impact [J]. Coastal Engineering, 2019, 147: 75 − 88. doi: 10.1016/j.coastaleng.2019.02.003
    [23]
    JOSE J, PODRAZKA O, OBHRAI C, et al. Methods for analysing wave slamming loads on truss structures used in offshore wind applications based on experimental data [J]. International Journal of Offshore and Polar Engineering, 2016, 26(2): 100 − 168. doi: 10.17736/ijope.2016.mkr05
    [24]
    SUJA-THAUVIN L, KROKSTAD J R, BACHYNSKI E E, et al. Experimental results of a multimode monopile offshore wind turbine support structure subjected to steep and breaking irregular waves [J]. Ocean Engineering, 2017, 146(5): 339 − 351.
  • Cited by

    Periodical cited type(3)

    1. 李彪,吕飞,孙浩,丁发兴,蔡勇强,张朝成. 相同造价下几类方形截面桥墩抗震性能对比研究. 钢结构(中英文). 2024(01): 53-67 .
    2. 黎浩然. 中国古代名桥——广济桥的基础加固修缮保护施工技术研究. 广州建筑. 2024(01): 89-92 .
    3. 徐普,张晟宇,郑中凯,刘秋江,邱俊峰. 卷破波冲击新型桩板桥梁结构水动力特性试验研究. 振动与冲击. 2024(07): 355-364 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (339) PDF downloads (82) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return