LIU Jing-bo, BAO Xin, LI Shu-tao, WANG Fei, WANG Dong. STABILITY IMPROVEMENT OF EXPLICIT ALGORITHM WHEN USING VISCOELASTIC ARTIFICIAL BOUNDARY[J]. Engineering Mechanics, 2023, 40(5): 20-31. DOI: 10.6052/j.issn.1000-4750.2021.10.0836
Citation: LIU Jing-bo, BAO Xin, LI Shu-tao, WANG Fei, WANG Dong. STABILITY IMPROVEMENT OF EXPLICIT ALGORITHM WHEN USING VISCOELASTIC ARTIFICIAL BOUNDARY[J]. Engineering Mechanics, 2023, 40(5): 20-31. DOI: 10.6052/j.issn.1000-4750.2021.10.0836

STABILITY IMPROVEMENT OF EXPLICIT ALGORITHM WHEN USING VISCOELASTIC ARTIFICIAL BOUNDARY

More Information
  • Received Date: October 27, 2021
  • Revised Date: March 03, 2022
  • Available Online: March 13, 2022
  • When the viscoelastic artificial boundary is applied to explicit dynamic calculation, the stability conditions of the boundary area are more stringent than that of internal domain due to the stiffness and damping of artificial boundary, which limits the application of viscoelastic artificial boundary in large-scale explicit dynamic analysis. Based on the analysis of stability conditions and influencing factors of the viscoelastic artificial boundary in explicit time-domain stepwise integration algorithm, this study proposes a method to improve the numerical integration stability by introducing the lumped mass to the artificial boundary and thus develops an improved viscoelastic artificial boundary. In order to obtain the reasonable mass value of artificial boundary, the stability analysis method based on local boundary subsystem is used to derive the stability conditions of the improved viscoelastic artificial boundary, and then the recommended value of the lumped mass is obtained through comparative analysis. After adopting this recommended value, the stability condition of the artificial boundary area is looser than that of the internal calculation domain. Thus the overall numerical model is controlled by the internal domain. Then the conventional stability discrimination method can be used to estimate the critical integration time step that satisfies the stability condition. Numerical examples show that the method for improving the stability of viscoelastic artificial boundary proposed in this study can increase the calculation efficiency without losing the calculation accuracy. Therefore, it has strong practicability.
  • [1]
    刘晶波, 吕彦东. 结构-地基动力相互作用分析中的一种直接方法[J]. 土木工程学报, 1998, 31(3): 55 − 64.

    LIU Jingbo, LYU Yandong. A direct method for analysis of dynamic soil-structure interaction [J]. China Civil Engineering Journal, 1998, 31(3): 55 − 64. (in Chinese)
    [2]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学, 2005, 22(6): 46 − 51. doi: 10.3969/j.issn.1000-4750.2005.06.008

    LIU Jingbo, WANG Zhenyu, DU Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems [J]. Engineering Mechanics, 2005, 22(6): 46 − 51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008
    [3]
    谷音. 结构-地基动力相互作用问题高效数值方法研究及工程应用[D]. 北京: 清华大学, 2005.

    GU Yin. Theoretical analysis of the efficient numerical method for soil-structure dynamic interaction and its application [D]. Beijing: Tsinghua University, 2005. (in Chinese)
    [4]
    赵密. 近场波动有限元模拟的应力型时域人工边界条件及其应用[D]. 北京: 北京工业大学, 2009.

    ZHAO Mi. Stress-type time-domain artificial boundary condition for finite-element simulation of near-field wave motion and its engineering application [D]. Beijing: Beijing University of Technology, 2009. (in Chinese)
    [5]
    刘晶波, 谷音, 杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070 − 1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070 − 1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [6]
    谷音, 刘晶波, 杜义欣, 等. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学, 2007, 24(12): 31 − 37. doi: 10.3969/j.issn.1000-4750.2007.12.006

    GU Yin, LIU Jingbo, DU Yixin, et al. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element [J]. Engineering Mechanics, 2007, 24(12): 31 − 37. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.12.006
    [7]
    卢华喜, 梁平英, 尚守平. 地基非线性波动问题中黏-弹性人工边界研究[J]. 岩土力学, 2008, 29(7): 1911 − 1916. doi: 10.3969/j.issn.1000-7598.2008.07.034

    LU Xihua, LIANG Pingying, SHANG Shouping. Research on viscoelastic artificial boundary for problem of nonlinear wave motion in soil [J]. Rock and Soil Mechanics, 2008, 29(7): 1911 − 1916. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.07.034
    [8]
    赵密. 粘弹性人工边界及其与透射人工边界的比较研究[D]. 北京: 北京工业大学, 2004.

    ZHAO Mi. Study on the viscous-spring boundary and the transmitting boundary [D]. Beijing: Beijing University of Technology, 2004. (in Chinese)
    [9]
    XIA C, QI C Z, LI X Z. Viscoelastic boundary conditions for multiple excitation sources in the time domain [J]. Mathematical Problems in Engineering, 2018: 7982342.
    [10]
    李会芳, 赵密, 杜修力. 竖向成层介质中标量波传播问题的高精度人工边界条件[J]. 工程力学, 2022, 39(5): 55 − 64. doi: 10.6052/j.issn.1000-4750.2021.02.0112

    LI Huifang, ZHAO Mi, DU Xiuli. High-precision artificial boundary condition for scalar wave propagation in vertical stratified media [J]. Engineering Mechanics, 2022, 39(5): 55 − 64. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.02.0112
    [11]
    谭辉, 刘晶波, 王东洋, 等. 地下结构地震反应分析中人工边界条件和地震波动输入方法对比研究[J]. 工程力学, 2018, 35(增刊 1): 212 − 216, 222. doi: 10.6052/j.issn.1000-4750.2017.05.S042

    TAN Hui, LIU Jingbo, WANG Dongyang, et al. Comparison on artificial boundaries and seismic wave input methods in seismic analysis of underground structures [J]. Engineering Mechanics, 2018, 35(Suppl 1): 212 − 216, 222. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S042
    [12]
    王少伟, 包腾飞. 基于Marc二次开发实现粘弹性人工边界和振型分解反应谱法[J]. 世界地震工程, 2018, 34(3): 129 − 137.

    WANG Shaowei, BAO Tengfei. Viscoelastic artificial boundary and response spectral method of mode decomposition based on Marc second development [J]. World Earthquake Engineering, 2018, 34(3): 129 − 137. (in Chinese)
    [13]
    刘晶波, 杜义欣, 闫秋实. 粘弹性人工边界及地震动输入在通用有限元软件中的实现[J]. 防灾减灾工程学报, 2007, 27(增刊): 37 − 42.

    LIU Jingbo, DU Yixin, YAN Qiushi. Realization of viscoelastic artificial boundary and seismic wave input in general finite element software [J]. Journal of Disaster Prevention and Mitigation Engineering, 2007, 27(Suppl): 37 − 42. (in Chinese)
    [14]
    张燎军, 张慧星, 王大胜, 等. 黏弹性人工边界在ADINA中的应用[J]. 世界地震工程, 2008, 24(1): 14 − 18.

    ZHANG Liaojun, ZHANG Huixing, WANG Dasheng, et al. The application of artificial viscous spring boundary in ADINA [J]. World Earthquake Engineering, 2008, 24(1): 14 − 18. (in Chinese)
    [15]
    HUANG J Q, DU X L, JIN L, et al. Impact of incident angles of P waves on the dynamic responses of long lined tunnels [J]. Earthquake Engineering and Structural Dynamics, 2016, 45(15): 2435 − 2454. doi: 10.1002/eqe.2772
    [16]
    马笙杰, 迟明杰, 陈红娟, 等. 黏弹性人工边界在ABAQUS中的实现及地震动输入方法的比较研究[J]. 岩石力学与工程学报, 2020, 39(7): 1445 − 1457.

    MA Shengjie, CHI Mingjie, CHEN Hongjuan, et al. Implementation of viscous-spring boundary in ABAQUS and comparative study on seismic motion input methods [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1445 − 1457. (in Chinese)
    [17]
    宝鑫, 刘晶波, 李述涛, 等. 土-结构相互作用对储液结构动力反应的影响研究[J]. 工程力学, 2021, 38(增刊): 125 − 132. doi: 10.6052/j.issn.1000-4750.2020.06.S022

    BAO Xin, LIU Jingbo, LI Shutao, et al. Influence analysis of soil-structure interaction on the dynamic response of storage tanks [J]. Engineering Mechanics, 2021, 38(Suppl): 125 − 132. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.S022
    [18]
    赵密, 王鑫, 钟紫蓝, 等. P波斜入射下非基岩场地中核岛结构地震响应规律研究[J]. 工程力学, 2020, 37(12): 43 − 51, 77. doi: 10.6052/j.issn.1000-4750.2019.12.0744

    ZHAO Mi, WANG Xin, ZHONG Zilan, et al. Study on seismic responses of nuclear island structure in non-bedrock site under obliquely-incidence of P waves [J]. Engineering Mechanics, 2020, 37(12): 43 − 51, 77. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0744
    [19]
    黄景琦, 杜修力, 田志敏, 等. 斜入射SV波对地铁车站地震响应的影响[J]. 工程力学, 2014, 31(9): 81 − 88, 103. doi: 10.6052/j.issn.1000-4750.2013.03.0278

    HUANG Jingqi, DU Xiuli, TIAN Zhimin, et al. Effect of the oblique incidence of seismic sv waves on the seismic response of subway station structure [J]. Engineering Mechanics, 2014, 31(9): 81 − 88, 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0278
    [20]
    郜新军, 赵成刚, 刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 − 243.

    GAO Xinjun, ZHAO Chenggang, LIU Qin. Seismic response analysis of multi-span viaduct considering topographic effect and soil-structure dynamic interaction based on inclined wave [J]. Engineering Mechanics, 2011, 28(11): 237 − 243. (in Chinese)
    [21]
    BAO X, LIU J B, LI S T, et al. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves [J]. Ocean Engineering, 2020, 200: 107021. doi: 10.1016/j.oceaneng.2020.107021
    [22]
    BAO X, LIU J B, CHEN S, et al. Seismic analysis of the reef-seawater system: Comparison between 3D and 2D models [J]. Journal of Earthquake Engineering. 2020, 1785: 976.
    [23]
    SONG Z Q, WANG F, LI Y L, et al. Nonlinear seismic responses of the powerhouse of a hydropower station under near-fault plane P-wave oblique incidence [J]. Engineering Structures, 2019, 199: 109613.
    [24]
    WANG F, SONG Z Q, LIU Y H, et al. Seismic wave input method for high earth dams considering the transmission amplification effect of the bedrock-overburden interface [J]. Computers and Geotechnics, 2021, 130: 103927. doi: 10.1016/j.compgeo.2020.103927
    [25]
    NEWMARK N M. A method of computation for structural dynamics [J]. Journal of the engineering mechanics division, 1959, 85(3): 67 − 94. doi: 10.1061/JMCEA3.0000098
    [26]
    HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft [J]. Journal of the Aeronautical Sciences, 1950, 17(9): 540 − 550. doi: 10.2514/8.1722
    [27]
    CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method [J]. Journal of Applied Mechanics, 1993, 60: 371 − 375. doi: 10.1115/1.2900803
    [28]
    CHEN C, RICLES J M. Development of direct integration algorithms for structural dynamics using discrete control theory [J]. Journal of Engineering Mechanics, 2008, 134(8): 676 − 683. doi: 10.1061/(ASCE)0733-9399(2008)134:8(676)
    [29]
    BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. 2nd ed. John Wiley & Sons Inc, 2014.
    [30]
    CHANG S Y. A new family of explicit methods for linear structural dynamics [J]. Computers and Structures, 2010, 88(11/12): 755 − 772.
    [31]
    李述涛, 刘晶波, 宝鑫, 等. 采用粘弹性人工边界单元时显式算法稳定性分析[J]. 工程力学, 2020, 37(11): 1 − 11. doi: 10.6052/j.issn.1000-4750.2019.12.0755

    LI Shutao, LIU Jingbo, BAO Xin, et al. Stability analysis of explicit algorithms with visco-elastic artificial boundary elements [J]. Engineering Mechanics, 2020, 37(11): 1 − 11. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.12.0755
    [32]
    KAMEL A H. A stability checking procedure for finite difference schemes with boundary conditions in acoustic media [J]. Bulletin of the Seismological Society of America, 1989, 79(5): 1601 − 1606. doi: 10.1785/BSSA0790051601
    [33]
    关慧敏, 廖振鹏. 局部人工边界稳定性的一种分析方法[J]. 力学学报, 1996, 28(3): 1601 − 1606. doi: 10.3321/j.issn:0459-1879.1996.03.016

    GUAN Huimin, LIAO Zhenpeng. A method for the stability analysis of local artificial boundaries [J]. Acta Mechanica Sinica, 1996, 28(3): 1601 − 1606. (in Chinese) doi: 10.3321/j.issn:0459-1879.1996.03.016
    [34]
    HUGHES T J R. Analysis of transient algorithms with particular reference to stability behavior [M]. Amsterdam: North-Holland, 1983: 67 − 155.
    [35]
    HUGHES T J R. Analysis of transient algorithms with particular reference to stability behavior [M]. Amsterdam, Nethand: Computational Methods for Transient Analysis. NorthHolland Computational Methods in Mechanics, v1, 1983: 67 − 155.
    [36]
    王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京: 清华大学出版社, 1997: 66 − 67.

    WANG Xucheng, SHAO Min. Basic principle and numerical method of finite element method [M]. Beijing: Tsinghua University Press, 1997: 66 − 67. (in Chinese)

Catalog

    Article Metrics

    Article views (387) PDF downloads (106) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return