YANG Zhi-lin, LUO Yi, WANG Hai-feng. IDENTIFICATION ACCURACY EVALUATION OF OPTIMIZED RANDOM SUBSPACE METHOD BASED ON DATABASE[J]. Engineering Mechanics, 2023, 40(4): 116-128, 192. DOI: 10.6052/j.issn.1000-4750.2021.10.0769
Citation: YANG Zhi-lin, LUO Yi, WANG Hai-feng. IDENTIFICATION ACCURACY EVALUATION OF OPTIMIZED RANDOM SUBSPACE METHOD BASED ON DATABASE[J]. Engineering Mechanics, 2023, 40(4): 116-128, 192. DOI: 10.6052/j.issn.1000-4750.2021.10.0769

IDENTIFICATION ACCURACY EVALUATION OF OPTIMIZED RANDOM SUBSPACE METHOD BASED ON DATABASE

More Information
  • Received Date: October 06, 2021
  • Revised Date: June 19, 2022
  • Available Online: July 13, 2022
  • The evaluation of modal identification accuracy runs through the whole process of modal recognition research, but the evaluation method of modal identification accuracy based on a single or a few examples is accidental. Therefore, a method for evaluating modal identification accuracy based on structural response database is proposed. The key step of database construction is to calculate the structural response based on modal parameters. A database construction method is proposed to construct the physical model of structures (mass, stiffness and damping matrix) based on modal parameters, and then calculate the structural response, and the feasibility is verified with an example. Random subspace legal order is difficult, and false mode elimination is difficult; An optimized random subspace method based on singular entropy incremental order determination and two-stage spurious mode elimination in steady state diagram is proposed, and the identification accuracy of the optimized random subspace method is evaluated by database method. The results show that the method based on database is feasible. The optimized random subspace method has high identification accuracy of frequency and mode shape, but low identification accuracy of damping ratio.
  • [1]
    LI C, CAO Y. Modal parameter identification based on an enhanced hilbert vibration decomposition [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45: 1 − 12.
    [2]
    陈永高, 钟振宇, 何杰. 基于改进确定-随机子空间算法的桥梁结构模态参数识别[J]. 振动与冲击, 2021, 40(2): 220 − 227.

    CHEN Yonggao, ZHONG Zhenyu, HE Jie. Modal parameter identification of bridge structures based on an improved deterministic-stochastic subspace identification method [J]. Journal of Vibration and Shock, 2021, 40(2): 220 − 227. (in Chinese)
    [3]
    刘威, 杨娜, 白凡, 等. 基于环境激励的藏式古城墙动力特性研究[J]. 土木工程学报, 2021, 54(4): 45 − 56. doi: 10.15951/j.tmgcxb.2021.04.006

    LIU Wei, YANG Na, BAI Fan, et al. Research on the dynamic characteristics of Tibetan ancient city wall based on ambient excitation [J]. China Civil Engineering Journal, 2021, 54(4): 45 − 56. (in Chinese) doi: 10.15951/j.tmgcxb.2021.04.006
    [4]
    AULAKH D S, BHALLA S. 3D torsional experimental strain modal analysis for structural health monitoring using piezoelectric sensors [J]. Measurement, 2021, 180: 109476-1 − 109476-20.
    [5]
    DENG X, SU C, MA H. Green’s function method for modal analysis of structures with interval parameters [J]. Journal of Engineering Mathematics, 2021, 127(1): 1 − 18. doi: 10.1007/s10665-021-10089-4
    [6]
    FANG Z, YU J, MENG X. Modal parameters identification of bridge structures from gnss data using the improved empirical wavelet transform [J]. Remote Sensing, 2021, 13: 13173375-1 − 13173375-20.
    [7]
    FRIIS T, TARPØ M, KATSANOS E I, et al. Best linear approximation of nonlinear and nonstationary systems using operational modal analysis [J]. Mechanical Systems and Signal Processing, 2021, 152: 107395-1 − 107395-20.
    [8]
    HE X H, HUA X G, CHEN Z Q, et al. EMD-based random decrement technique for modal parameter identification of an existing railway bridge [J]. Engineering Structures, 2011, 33(4): 1348 − 1356. doi: 10.1016/j.engstruct.2011.01.012
    [9]
    HIZAL Ç. Frequency domain data merging in operational modal analysis based on least squares approach [J]. Measurement, 2021, 170: 108742-1 − 108742-11.
    [10]
    SUN H, DI S, DU Z, et al. Application of multi-synchro squeezing transform for structural modal parameter identification [J]. Journal of Civil Structural Health Monitoring, 2021, 11(5): 1175 − 1188. doi: 10.1007/s13349-021-00500-0
    [11]
    YAO X J, YI T H, ZHAO S W, et al. Fully automated operational modal identification using continuously monitoring data of bridge structures [J]. Journal of Performance of Constructed Facilities, 2021, 35(5): 1 − 11.
    [12]
    YAN W, REN W. Operational modal parameter identification from power spectrum density transmissibility [J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(3): 202 − 217. doi: 10.1111/j.1467-8667.2011.00735.x
    [13]
    ZHOU Y, JIANG X, ZHANG M, et al. Modal parameters identification of bridge by improved stochastic subspace identification method with Grubbs criterion [J]. Measurement and Control, 2021, 54(3/4): 457 − 464. doi: 10.1177/0020294021993831
    [14]
    韩建平, 郑沛娟. 环境激励下基于快速贝叶斯FFT的实桥模态参数识别[J]. 工程力学, 2014, 31(4): 119 − 125. doi: 10.6052/j.issn.1000-4750.2012.07.0560

    HAN Jianping, ZHENG Peijuan. Modal parameter identification of an actual bridge by fast Bayesian FFT method under ambient excitation [J]. Engineering Mechanics, 2014, 31(4): 119 − 125. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.07.0560
    [15]
    秦超, 颜王吉, 孙倩, 等. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212 − 222. doi: 10.6052/j.issn.1000-4750.2018.11.0604

    QIN Chao, YAN Wangji, SUN Qian, et al. Operation modal analysis of bridge engineering based on Bayesian spectral density approach using a variable separation technique [J]. Engineering Mechanics, 2019, 36(10): 212 − 222. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.11.0604
    [16]
    ZHU Z, AU S, LI B, et al. Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes [J]. Mechanical Systems and Signal Processing, 2021, 150: 107261-1 − 107261-25.
    [17]
    YAN W, REN W. An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis: Theoretical and experimental investigation [J]. Engineering Structures, 2015, 102(2015): 108 − 119.
    [18]
    XIA Y, LI H, FAN Z, et al. Modal parameter identification based on hilbert vibration decomposition in vibration stability of bridge structures [J]. Advances in Civil Engineering, 2021, 2021: 6688686-1 − 6688686-9.
    [19]
    蔡康, 郅伦海, 李秋胜, 等. 环境风激励下超高层建筑模态参数识别[J]. 应用力学学报, 2021, 38(2): 465 − 473.

    CAI Kang, ZHI Lunhai, LI Qiusheng, et al. Modal parameter identification of super tall buildings under ambient wind excitation [J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 465 − 473. (in Chinese)
    [20]
    WEN P, KHAN I, HE J, et al. Application of improved combined deterministic-stochastic subspace algorithm in bridge modal parameter identification [J]. Shock and Vibration, 2021, 2021: 8855162-1 − 8855162-11.
    [21]
    YE X, HUANG P, PAN C, et al. Innovative stabilization diagram for automated structural modal identification based on ERA and hierarchical cluster analysis [J]. Journal of Civil Structural Health Monitoring, 2021, 11(5): 1355 − 1373. doi: 10.1007/s13349-021-00514-8
    [22]
    LAKSHMI K, REDDY V K, RAO A R M. Modal identification of practical engineering structures using second-order blind identification [J]. Journal of The Institution of Engineers (India): Series A, 2021, 102(2): 499 − 512. doi: 10.1007/s40030-021-00523-2
    [23]
    杨陈云, 臧朝平, 黄梓. 基于激光测振的转动自由度模态识别方法[J]. 振动, 测试与诊断, 2020, 40(6): 1198 − 1203.

    YANG Chenyun, ZANG Chaoping, HUANG Zi. Rotational DOF measurement and identification based on doppler laser vibrometer [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6): 1198 − 1203. (in Chinese)
    [24]
    NADERPOUR H, FAKHARIAN P. A synthesis of peak picking method and wavelet packet transform for structural modal identification [J]. KSCE Journal of Civil Engineering, 2016, 20(7): 2859 − 2867. doi: 10.1007/s12205-016-0523-4
    [25]
    孙倩, 颜王吉, 任伟新. 基于响应传递比的桥梁结构工作模态参数识别[J]. 工程力学, 2017, 34(11): 194 − 201. doi: 10.6052/j.issn.1000-4750.2016.07.0558

    SUN Qian, YAN Wangji, REN Weixin. Operation modal analysis of bridge engineering based on the dynamic transmissibility measurements [J]. Engineering Mechanics, 2017, 34(11): 194 − 201. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.07.0558
    [26]
    陈英俊, 甘幼琛, 于希哲. 结构随机振动[M]. 北京: 人民交通出版社, 1998: 91 − 147.

    CHEN Yingjun, GAN Youchen, YU Xizhe. Random vibration of structure [M]. Beijing: China Communications Press, 1998: 91 − 147. (in Chinese)
    [27]
    JAMES HU S, BAO X, LI H. Model order determination and noise removal for modal parameter estimation [J]. Mechanical Systems and Signal Processing, 2010, 24(6): 1605 − 1620. doi: 10.1016/j.ymssp.2010.01.005
    [28]
    王德鑫. 基于频响函数的有限元模型修正及实验研究[D]. 南京: 南京航空航天大学, 2012: 22 − 23.

    WANG Dexin. Analysis of finite element model updating based on the frequency response function and experiment investigation [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 22 − 23. (in Chinese)
    [29]
    NEWMARK N M. A method of computation for structural dynamics [J]. Journal of the Engineering Mechanics ASCE, 1959, 85(3): 67 − 94.
    [30]
    高强, 谭述君, 钟万勰. 精细积分方法研究综述[J]. 中国科学: 技术科学, 2016, 46(12): 1207 − 1218. doi: 10.1360/N092016-00205

    GAO Qiang, TAN Shujun, ZHONG Wanxie. A survey of the precise integration method [J]. Scientia Sinica (Technologica), 2016, 46(12): 1207 − 1218. (in Chinese) doi: 10.1360/N092016-00205
    [31]
    汪梦甫, 周锡元. 结构动力方程的高斯精细时程积分法[J]. 工程力学, 2004, 21(4): 13 − 16. doi: 10.3969/j.issn.1000-4750.2004.04.003

    WANG Mengfu, ZHOU Xiyuan. Gauss precise time-integration of structure dynamic analysis [J]. Engineering Mechanics, 2004, 21(4): 13 − 16. (in Chinese) doi: 10.3969/j.issn.1000-4750.2004.04.003
    [32]
    钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131 − 136. doi: 10.3321/j.issn:1000-8608.1994.02.015

    ZHONG Wanxie. On precise time-integration method for structural dynamics [J]. Journal of Dalian University of Technology, 1994, 34(2): 131 − 136. (in Chinese) doi: 10.3321/j.issn:1000-8608.1994.02.015
    [33]
    ZANG C, GRAFE H, IMREGUN M. Frequency–domain criteria for correlating and updating dynamic finite element models [J]. Mechanical Systems and Signal Processing, 2001, 15(1): 139 − 155. doi: 10.1006/mssp.2000.1357
    [34]
    GÖGE D, LINK M. Assessment of computational model updating procedures with regard to model validation [J]. Aerospace Science and Technology, 2003, 7(1): 47 − 61. doi: 10.1016/S1270-9638(02)01193-8
    [35]
    滑广军, 吴运新, 吴吉平. 一种新的频响函数无偏估计方法[J]. 振动、测试与诊断, 2003, 23(3): 21 − 24. doi: 10.3969/j.issn.1004-6801.2003.03.006

    HUA Guangjun, WU Yunxin, WU Jiping. A new unbiased frequency response function estimator in experimental modal analysis [J]. Journal of Vibration, Measurement & Diagnosis, 2003, 23(3): 21 − 24. (in Chinese) doi: 10.3969/j.issn.1004-6801.2003.03.006
    [36]
    殷红, 马静静, 董小圆, 等. 基于频响函数的结构损伤识别模型修正方法[J]. 噪声与振动控制, 2019, 39(2): 7 − 13. doi: 10.3969/j.issn.1006-1355.2019.02.002

    YIN Hong, MA Jingjing, DONG Xiaoyuan, et al. Structural damage identification using model updating method based on frequency response functions [J]. Noise and Vibration Control, 2019, 39(2): 7 − 13. (in Chinese) doi: 10.3969/j.issn.1006-1355.2019.02.002
    [37]
    肖祥, 任伟新. 实时工作模态参数数据驱动随机子空间识别[J]. 振动与冲击, 2009, 28(8): 148 − 153.

    XIAO Xiang, REN Weixin. Improved data-driven stochastic subspace identification of online operational modal parameters [J]. Journal of Vibration and Shock, 2009, 28(8): 148 − 153. (in Chinese)
    [38]
    刘威, 杨娜, 白凡, 等. 基于敏感性分析的协方差随机子空间方法参数优化[J]. 工程力学, 2021, 38(2): 157 − 167, 178. doi: 10.6052/j.issn.1000-4750.2020.04.0223

    LIU Wei, YANG Na, BAI Fan, et al. Parameter optimization of covariance-driven stochastic subspace identification method based on sensitivity analysis [J]. Engineering Mechanics, 2021, 38(2): 157 − 167, 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0223
  • Related Articles

    [1]LI Xin, TANG Zhen-yun, DU Xiu-li. IDENTIFICATION OF STABLE PARAMETERS FOR DISCRETE-TIME RATIONAL APPROXIMATION OF MDOF FREQUENCY RESPONSE FUNCTIONS IN SEMI-INFINITE MEDIA[J]. Engineering Mechanics, 2024, 41(8): 1-10. DOI: 10.6052/j.issn.1000-4750.2022.05.0446
    [2]WU Zong-zhen, LIU Wei-ning, MA Long-xiang, WANG Wen-bin. PREDICTION METHOD FOR METRO ENVIRONMENTAL VIBRATIONS BASED ON MEASURED FREQUENCY RESPONSE FUNCTIONS[J]. Engineering Mechanics, 2015, 32(6): 155-161. DOI: 10.6052/j.issn.1000-4750.2013.12.1166
    [3]YE Hong-ling, LI Yao-ming, ZHANG Yan-ming, SUI Yun-kang. STRUCTURAL TOPOLOGY OPTIMIZATION OF FREQUENCY RESPONSE PROBLEM BY APPROXIMATELY LOGARITHMIC HEAVISIDE FUNCTION BASED ON ICM METHOD[J]. Engineering Mechanics, 2014, 31(6): 13-20. DOI: 10.6052/j.issn.1000-4750.2013.03.0247
    [4]HU Chun-lin, XIONG Wei-fen. STUDY ON STEADY-STATE FREQUENCY-RESPONSE OF NONLINEAR AXIAL FORCED VIBRATION OF PILES[J]. Engineering Mechanics, 2010, 27(1): 173-178.
    [5]WU Ke-yi, XU Zhao-dong. DAMAGE DETECTION FOR RETICULATED STRUCTURES BASED ON SPECTRUM ENERGY OF FREQUENCY RESPONSE FUNCTION[J]. Engineering Mechanics, 2009, 26(11): 179-183,.
    [6]YANG Yan-fang, . A METHOD OF TRUSS STRUCTURAL DAMAGE IDENTIFICATION BASED ON PRINCIPAL COMPONENT ANALYSIS AND FREQUENCY RESPONSE FUNCTION[J]. Engineering Mechanics, 2007, 24(9): 105-110.
    [7]GUO Hui-yong, LI Zheng-liang. QUALITATIVE AND QUANTITATIVE IDENTIFICATION OF MULTIPLE DAMAGES BASED ON INCOMPLETE FREQUENCY RESPONSE FUNCTIONS[J]. Engineering Mechanics, 2007, 24(4): 13-017.
    [8]LIU Cheng-li, LU Zhen-zhou. A COMPOSITE RESPONSE SURFACE METHOD FOR FAILURE PROBABILITY CALCULATION OF NONLINEAR IMPLICIT LIMIT STATE EQUATION[J]. Engineering Mechanics, 2006, 23(2): 29-33.
    [9]TONG Xin. AN ACCURATE MODAL SUPERPOSITION METHOD FOR CALCULATING FREQUENCY RESPONSE FUNCTION OF VISCOELASTICALLY DAMPED STRUCTURES[J]. Engineering Mechanics, 2000, 17(5): 74-78,1.
    [10]HUA Hong-xing, QU Zu-qing, FU Zhi-fang. A METHOD FOR COMPUTING FREQUENCY RESPONSE FUNCTIONS OF VISCOUS DAMPED SYSTEMS[J]. Engineering Mechanics, 1999, 16(4): 126-130.
  • Cited by

    Periodical cited type(2)

    1. 简嘉伟,汪利,吕中荣. 基于协方差回归的人行天桥模态参数辨识. 工程力学. 2025(04): 150-158 . 本站查看
    2. 李涧鸣,包腾飞,周喜武,高瑾瑾,顾昊. 基于解析二阶盲辨识的结构工作模态分析及真假模态区分. 工程力学. 2024(01): 249-256 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (278) PDF downloads (70) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return