FU Bo, HONG Qi, JING Ting, SUN Hao, TONG Gen-shu. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF SEISMIC PERFORMANCE OF STIFFENED THIN STEEL PLATE SHEAR WALLS CONSIDERING THE EFFECT OF VERTICAL LOAD ON FRAME COLUMN[J]. Engineering Mechanics, 2023, 40(12): 76-88. DOI: 10.6052/j.issn.1000-4750.2022.02.0146
Citation: FU Bo, HONG Qi, JING Ting, SUN Hao, TONG Gen-shu. EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF SEISMIC PERFORMANCE OF STIFFENED THIN STEEL PLATE SHEAR WALLS CONSIDERING THE EFFECT OF VERTICAL LOAD ON FRAME COLUMN[J]. Engineering Mechanics, 2023, 40(12): 76-88. DOI: 10.6052/j.issn.1000-4750.2022.02.0146

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF SEISMIC PERFORMANCE OF STIFFENED THIN STEEL PLATE SHEAR WALLS CONSIDERING THE EFFECT OF VERTICAL LOAD ON FRAME COLUMN

More Information
  • Received Date: February 14, 2022
  • Revised Date: July 10, 2022
  • Available Online: July 18, 2022
  • An experimental research was conducted on seismic behavior of stiffened thin steel plate shear walls (SPSWs) considering the effect of vertical load on frame column. Two full-scale rectangular concrete-filled steel tube columns-stiffened thin steel plate shear specimens were tested under low-cycle reverse load. The design of specimens considers two cases of vertical stiffeners with equal spacing and variable spacing. The test results show that the specimens have good ductility and energy consumption capacity when the frame columns are subjected to high axial pressure. The ultimate drift angle of the specimens reaches 1/30. The plastic deformation of the specimens is mainly manifested as the out-of-plane buckling, which satisfies the design concept of “strong column and weak beam”. The arrangement of the stiffeners has no obvious influence on the seismic performance of the specimens. The nonlinear finite element method is further used to study the influence of initial defects and axial compression ratio on the lateral resistance performance of the specimen. The analysis results show that the initial defect distribution mode of the wall and the out-of-plane deflection amplitude have little effect on the pushover curve of the specimens. When the axial compression ratio of the frame column is greater than 0.7, the bearing capacity and deformation capacity of the specimens are reduced. Based on the shear control failure characteristics of the specimens, the calculation method of the specimen’s shear capacity is given. The calculated value is in good agreement with the finite element simulation value, and it is conservative than the experimental value.

  • [1]
    周耀彬, 吴方忠, 付波, 等. 基于中美欧抗震规范的强震区高层钢结构住宅设计对比[J]. 建筑结构, 2021, 51(增刊 1): 789 − 793.

    ZHOU Yaobin, WU Fangzhong, FU Bo, et al. Comparative analysis of high-rise steel structure residence in meizoseismal area based on seismic design codes of China, US and Europe [J]. Building Structure, 2021, 51(Suppl 1): 789 − 793. (in Chinese)
    [2]
    付波, 李梓捷, 林晨豪, 等. 考虑竖向荷载的外包装饰层钢板剪力墙抗震性能试验研究[J]. 工业建筑, 2022, 52(11): 49 − 56.

    FU Bo, Li Zijie, LIN Chenghao, et al. Experimental research on seismic performance of steel plate shear wall with outer decorative layer considering the effect of vertical load [J]. Industrial Construction, 2022, 52(11): 49 − 56. (in Chinese)
    [3]
    付波, 陈元, 盛凯, 等. 通高开洞加劲薄钢板剪力墙抗震性能研究[J]. 振动与冲击, 2023, 42(12): 18 − 28.

    FU Bo, CHEN Yuan, SHENG Kai, et al. A study on seismic behavior of full height opening stiffened thin steel plate shear wall [J]. Journal of Vibration and Shock, 2023, 42(12): 18 − 28. (in Chinese)
    [4]
    AISC 341-05, Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2005.
    [5]
    FEMA 450, NEHRP recommended provisions for seismic regulations for new buildings and other structures [S]. Washington D. C.: Building Seismic Safety Council, National Institute of Building Sciences, 2003.
    [6]
    CAN/CSA S16-94, Limit states design of steel structures [S]. Mississauga, Ontario, Canada: Canada Standards Association, 2001.
    [7]
    兰涛, 郭彦林, 郝际平. 施工过程中柱轴压作用对开洞薄板墙的受力影响分析[J]. 施工技术, 2011, 40(11): 66 − 70.

    LAN Tao, GUO Yanlin, HAO Jiping. Effects on structural behavior of steel plane shear wall(SPSW) with opening considering axial compression of the column during construction [J]. Construction Technology, 2011, 40(11): 66 − 70. (in Chinese)
    [8]
    ZHANG X Q, GUO Y L. Behavior of steel plate shear walls with pre-compression from adjacent frame columns [J]. Thin-Walled Structures, 2014, 77: 17 − 25. doi: 10.1016/j.tws.2013.11.011
    [9]
    PARK H G, KWACK J H, JEON S W, et al. Frame steel plate wall behavior under cyclic lateral loading [J]. Journal of Structural Engineering, 2007, 133(3): 378 − 388. doi: 10.1061/(ASCE)0733-9445(2007)133:3(378)
    [10]
    CHOI I R, PARK H G. Hysteresis model of thin infill plate for cyclic nonlinear analysis of steel plate shear walls [J]. Journal of Structural Engineering, 2010, 136(11): 1423 − 1434. doi: 10.1061/(ASCE)ST.1943-541X.0000244
    [11]
    郭彦林, 周明, 董全利, 等. 三类钢板剪力墙结构试验研究[J]. 建筑结构学报, 2011, 32(1): 17 − 29.

    GUO Yanlin, ZHOU Ming, DONG Quanli, et al. Experimental study on three types of steel plate shear walls under cyclic loading [J]. Journal of Building Structures, 2011, 32(1): 17 − 29. (in Chinese)
    [12]
    朱礼敏, 王俊, 田春雨, 等. 超薄加劲钢板剪力墙受剪性能试验研究及数值分析[J]. 建筑结构学报, 2020, 41(9): 178 − 187.

    ZHU Limin, WANG Jun, TIAN Chunyu, et al. Experimental study and numerical analysis of shear behavior of ultrathin stiffened steel plate shear walls [J]. Journal of Building Structures, 2020, 41(9): 178 − 187. (in Chinese)
    [13]
    PASLAR N, FARZAMPOUR A, HATAMI F. Infill plate interconnection effects on the structural behavior of steel plate shear walls [J]. Thin-Walled Structures, 2020, 149: 1 − 18.
    [14]
    MAHJOUB R, RAFTARI M, SEPAHVAND M F, et al. Theory of plastic mechanism control for seismic design of steel plate shear walls [J]. Engineering Structures, 2021, 235: 1 − 17.
    [15]
    聂建国, 樊健生, 黄远, 等. 钢板剪力墙的试验研究[J]. 建筑结构学报, 2010, 31(9): 1 − 8.

    NIE Jianguo, FAN Jiansheng, HUANG Yuan, et al. Experimental research on steel plate shear walls [J]. Journal of Building Structures, 2010, 31(9): 1 − 8. (in Chinese)
    [16]
    聂建国, 朱力, 樊健生, 等. 钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(1): 61 − 69.

    NIE Jianguo, ZHU Li, FAN Jiansheng, et al. Experimental research on seismic behavior of steel plate shear walls [J]. Journal of Building Structures, 2013, 34(1): 61 − 69. (in Chinese)
    [17]
    王先铁, 刘立达, 田黎敏, 等. 方钢管混凝土框架-薄钢板剪力墙抗震性能试验研究[J]. 钢结构, 2015, 30(12): 1 − 7.

    WANG Xiantie, LIU Lida, TIAN Limin, et al. Experimental study on seismic behavior of concrete-filled square steel tubular frame-thin steel plate shear walls [J]. Steel Construction, 2015, 30(12): 1 − 7. (in Chinese)
    [18]
    王先铁, 贾贵强, 李进, 等. 方钢管混凝土框架-竖向加劲薄钢板剪力墙的滞回性能研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(5): 637 − 645.

    WANG Xiantie, JIA Guiqiang, LI Jin, et al. Hysteretic behavior study of concrete-filled square steel tubular frame-thin steel plate shear wall with vertical stiffeners [J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2017, 49(5): 637 − 645. (in Chinese)
    [19]
    GB 50936−2014, 钢管混凝土结构技术规范[S]. 北京: 中国建筑工业出版社, 2014.

    GB 50936−2014, Technical code for concrete filled steel tubular structures [S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [20]
    王萌, 杨维国. 不同改进形式钢板剪力墙滞回性能研究[J]. 工程力学, 2016, 33(8): 110 − 121. doi: 10.6052/j.issn.1000-4750.2015.01.0017

    WANG Meng, YANG Weiguo. Study on hysteretic performances of the improved steel plate shear walls [J]. Engineering Mechanics, 2016, 33(8): 110 − 121. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.01.0017
    [21]
    杨雨青, 牟在根. 不同形式的槽钢加劲钢板剪力墙滞回性能研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(8): 876 − 888.

    YANG Yuqing, MU Zaigen. Hysteretic behavior of different forms of channel-stiffened steel plate shear walls [J]. Journal of Tianjin University(Science and Technology), 2019, 52(8): 876 − 888. (in Chinese)
    [22]
    牟在根, 杨雨青. 对角槽钢加劲钢板剪力墙抗震性能试验研究[J]. 工程力学, 2021, 38(3): 214 − 227. doi: 10.6052/j.issn.1000-4750.2020.05.0312

    MU Zaigen, YANG Yuqing. Experimental study on seismic behavior of steel plate shear walls with diagonal channel stiffeners [J]. Engineering Mechanics, 2021, 38(3): 214 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0312
    [23]
    于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98 − 110. doi: 10.6052/j.issn.1000-4750.2019.01.0110

    YU Jinguang, LIU Liming, HAO Jiping. Study on design method of vertical boundary element of partially encased composite frame-steel plate shear walls [J]. Engineering Mechanics, 2020, 37(2): 98 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0110
    [24]
    刘克智. 考虑竖向荷载的钢板剪力墙与防屈曲钢板剪力墙滞回性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LIU Kezhi. Hysteretic behavior of steel plate shear walls and buckling-restrained steel plate shear walls considering vertical load [D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [25]
    GB 50205−2020, 钢结构工程施工质量验收标准[S]. 北京: 中国计划出版社, 2020.

    GB 50205−2020, Standard for acceptance of construction quality of steel structures [S]. Beijing: China Planning Press, 2020. (in Chinese)
    [26]
    GB/T 50081−2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

    GB/T 50081−2019, Standard for test methods of concrete physical and mechanical properties [S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [27]
    JGJ 101−2015, 建筑抗震试验规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ 101−2015, Specificating of testing methods for earthquake resistant building [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [28]
    冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3): 36 − 46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics, 2017, 34(3): 36 − 46. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [29]
    JGJ 99−2015, 高层民用建筑钢结构技术规程[S]. 北京: 中国建筑工业出版社, 2015.

    JGJ 99−2015, Technical specification for steel structure of tall building [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [30]
    郭立湘, 童根树. 双向弯矩和轴力联合作用下截面的极限承载力[J]. 工业建筑, 2015, 45(9): 167 − 173. doi: 10.13204/j.gyjz201509033

    GUO Lixiang, TONG Genshu. Ulitimate bearing capacity of concrete filled rectangular box under biaxial bending moment and axial force [J]. Industrial Construction, 2015, 45(9): 167 − 173. (in Chinese) doi: 10.13204/j.gyjz201509033
    [31]
    CECS 159: 2004, 矩形钢管混凝土结构技术规程[S]北京: 中国计划出版社, 2004.

    CECS 159: 2004, Technical specification for structures with concrete-filled rectangular steel tube members [S]. Beijing: China Planning Press, 2004. (in Chinese)
    [32]
    GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2015.

    GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2015. (in Chinese)
    [33]
    韩林海. 钢管混凝土结构-理论与实践[M]. 北京: 科学出版社, 2004.

    HAN Linhai. Concrete-filled steel tube structure-theory and practice [M]. Beijing: Science Press, 2004. (in Chinese)
  • Cited by

    Periodical cited type(1)

    1. 柳扬. 风荷载对剪力墙结构性能的影响分析. 江西建材. 2024(02): 59-61 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (228) PDF downloads (44) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return