FU Xiang-qiu, PAN Dan-guang. A CALCULATION METHOD FOR DYNAMIC CHARACTERISTICS OF THE CANTILEVER-TYPE STRUCTURE IN OPEN SYSTEMS[J]. Engineering Mechanics, 2023, 40(1): 40-50. DOI: 10.6052/j.issn.1000-4750.2021.07.0568
Citation: FU Xiang-qiu, PAN Dan-guang. A CALCULATION METHOD FOR DYNAMIC CHARACTERISTICS OF THE CANTILEVER-TYPE STRUCTURE IN OPEN SYSTEMS[J]. Engineering Mechanics, 2023, 40(1): 40-50. DOI: 10.6052/j.issn.1000-4750.2021.07.0568

A CALCULATION METHOD FOR DYNAMIC CHARACTERISTICS OF THE CANTILEVER-TYPE STRUCTURE IN OPEN SYSTEMS

More Information
  • Received Date: July 22, 2021
  • Revised Date: November 08, 2021
  • Available Online: November 15, 2021
  • Structures are always built on sites to form open systems of soil-structure interaction. To calculate natural frequencies, mode shapes and modal damping ratios including the influence of radiation damping for the cantilever-type structure in open systems, an impulse-load-based modal analysis method is proposed. In the method, the finite element model of soil-structure interaction is excited by an impulse load to obtain the dynamic response, and then the dynamic characteristics can be obtained by modal identification method.Then, a cantilever-type five-story frame structure is taken as an example to investigate the effect of soil region and excitation location on the dynamic characteristics. On this basis, the influence of soil material damping on the modal damping ratio is discussed, and the results are compared with those of lumped-parameter models and the direct modal analysis method. The numerical results show that, the dynamic characteristics of the structure would converge to exact values with the increase of soil region. When the size of soil region is two times wider than the wavelength corresponding to the fundamental frequency of the structure, the relative errors of structural natural frequencies are less than 1%, and the relative errors of modal damping ratios are less than 5%. Any location, as long as it is not the modal node, can be used as excitation location to get accurate dynamic characteristics. However, there are obvious errors on the modal damping ratios by the three lumped-parameters model, and the fundamental frequency would approach zero with the increase of the size of soil region using the direct modal analysis method. Compared with the radiation damping, soil material damping has slight contribution to structure modal damping ratio.
  • [1]
    SHEN Chao, QIAN Deling. Dynamic characteristics and seismic response of frame-core tube structures, considering soil-structure interactions [J]. The Structural Design of Tall and Special Buildings, 2018, 28(4): 1 − 20.
    [2]
    PAPADOPOULOS M, BEEUMEN R V, FRANÇOIS S, et al. Modal characteristics of structures considering dynamic soil-structure interaction effects [J]. Soil Dynamics and Earthquake Engineering, 2018, 105: 114 − 118. doi: 10.1016/j.soildyn.2017.11.012
    [3]
    BIONDI G, MASSIMINO M R, MAUGERI M. Experimental study in the shaking table of the input motion characteristics in the dynamic SSI of a SDOF model [J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1835 − 1869. doi: 10.1007/s10518-014-9696-8
    [4]
    宋和平, 吕西林. 土体-结构相互作用对消能减震结构的影响[J]. 地震工程与工程振动, 2009, 29(1): 162 − 168.

    SONG Heping, LYU Xilin. Influence of soil-structure-interaction on energy dissipating structures [J]. Journal of Earthquake Engineering and Engineering Vibrition, 2009, 29(1): 162 − 168. (in Chinese)
    [5]
    王海, 鞠三, 刘伟庆, 等. 土-结构相互作用对消能减震结构动力特性的影响[J]. 南京工业大学学报(自然科学版), 2012, 34(5): 1 − 6.

    WANG Hai, JU San, LIU Weiqing, et al. Effects of soil-structure interaction on dynamic characteristics of energy dissipating structures [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2012, 34(5): 1 − 6. (in Chinese)
    [6]
    曾梦伟, 魏克湘, 李颖峰, 等. 大型风力机塔架固有频率分析[J]. 噪声与振动控制, 2017, 37(4): 30 − 33. doi: 10.3969/j.issn.1006-1355.2017.04.007

    ZENG Mengwei, WEI Kexiang, LI Yingfeng, et al. Natural frequency analysis of a wind turbine tower [J]. Noise and Vibration Control, 2017, 37(4): 30 − 33. (in Chinese) doi: 10.3969/j.issn.1006-1355.2017.04.007
    [7]
    GAZETAS G. Analysis of machine foundation vibration: State of the art [J]. Soil Dynamics and Earthquake Engineering, 1983, 2(1): 2 − 41. doi: 10.1016/0261-7277(83)90025-6
    [8]
    栾茂田, 林皋. 地基动力阻抗的双自由度集总参数模型[J]. 大连理工大学学报, 1996, 36(4): 477 − 482.

    LUAN Maotian, LIN Gao. 2-DOF lumped-parameter model of dynamic impedances of foundation soils [J]. Journal of Dalian University of Technology, 1996, 36(4): 477 − 482. (in Chinese)
    [9]
    MAHMOUD S, AUSTRELL P E, JANKOWSKI R. Simulation of the response of base-isolated buildings under earthquake excitations considering soil flexibility [J]. Earthquake Engineering & Engineering Vibration, 2012, 11(3): 359 − 374.
    [10]
    李昌平, 刘伟庆, 王曙光, 等. 土-隔震结构相互作用体系动力特性参数的简化分析方法[J]. 工程力学, 2013, 30(7): 173 − 179. doi: 10.6052/j.issn.1000-4750.2012.04.0228

    LI Changping, LIU Weiqing, WANG Shuguang, et al. Simplified method for calculating dynamic characteristics of soil-isolated structure system [J]. Engineering Mechanics, 2013, 30(7): 173 − 179. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0228
    [11]
    王满生, 潘旦光, 周锡元. 基于土层集总参数模型的土-结构动力相互作用分析[J]. 北京科技大学学报, 2007, 29(1): 5 − 10. doi: 10.3321/j.issn:1001-053X.2007.01.002

    WANG Mansheng, PAN Danguang, ZHOU Xiyuan. Soil-structure interaction analysis based on soil lumped parameters model [J]. Journal of University of Science and Technology Beijing, 2007, 29(1): 5 − 10. (in Chinese) doi: 10.3321/j.issn:1001-053X.2007.01.002
    [12]
    王国波, 于艳丽, 何卫. 不同经验公式对地基阻抗函数影响的对比分析[J]. 地下空间与工程学报, 2013, 9(增刊 1): 1657 − 1663.

    WANG Guobo, YU Yanli, HE Wei. Comparison analysis of the influence of different empirical formulas on soil impedance functions [J]. Chinese Journal of Underground Space and Engineering, 2013, 9(Suppl 1): 1657 − 1663. (in Chinese)
    [13]
    SHI Junyang. A systematic modeling approach for layered soil considering horizontal and rotational foundation vibrations [J]. Computers and Structures, 2020, 239: 106336. doi: 10.1016/j.compstruc.2020.106336
    [14]
    KECHIDI S, COLAO A, COSTA P A, et al. Modelling of soil-structure interaction in OpenSees: A practical approach for performance-based seismic design [J]. Structures, 2021, 30(1): 75 − 88.
    [15]
    赵密, 高志懂, 杜修力, 等. 地震作用下深厚土层-结构相互作用的高效分析方法[J]. 工程力学, 2019, 36(10): 58 − 65. doi: 10.6052/j.issn.1000-4750.2018.04.0245

    ZHAO Mi, GAO Zhidong, DU Xiuli, et al. Efficient analysis scheme for seismic soil-structure interaction with deep soil layer [J]. Engineering Mechanics, 2019, 36(10): 58 − 65. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0245
    [16]
    TORABI H, RAYHANI M T. Three dimensional finite element modeling of seismic soil–structure interaction in soft soil [J]. Computers and Geotechnics, 2014, 60: 9 − 19. doi: 10.1016/j.compgeo.2014.03.014
    [17]
    朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129 − 142. doi: 10.6052/j.issn.1000-4750.2020.02.0121

    ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3D nonlinear response characteristics of the pile-raftsupported AP1000 nuclear island building in soft deposits [J]. Engineering Mechanics, 2021, 38(1): 129 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0121
    [18]
    鲍华, 徐礼华, 周友. 考虑土-结构相互作用的基础隔震体系动力特性分析[J]. 工程抗震与加固改造, 2005, 27(4): 40 − 45. doi: 10.3969/j.issn.1002-8412.2005.04.010

    BAO Hua, XU Lihua, ZHOU You. Study on dynamic performance of base-isolated building systems considering soil structure interaction [J]. Earthquake Resistant Engineering and Retrofitting, 2005, 27(4): 40 − 45. (in Chinese) doi: 10.3969/j.issn.1002-8412.2005.04.010
    [19]
    潘旦光, 豆丽萍. 两相邻建筑“结构-土-结构体系”的动力特性[J]. 土木建筑与环境工程, 2014, 36(3): 92 − 98.

    PAN Danguang, DOU Liping. Dynamic characteristics of structure system for two neighbor buildings [J]. Journal of Civil Architectural and Environmental Engineering, 2014, 36(3): 92 − 98. (in Chinese)
    [20]
    李海山, 张逸青, 陈磊. 考虑土-结构相互作用的双层柱面网壳结构三维地震反应分析[J]. 工程抗震与加固改造, 2013, 35(2): 29 − 34. doi: 10.3969/j.issn.1002-8412.2013.02.005

    LI Haishan, ZHANG Yiqing, CHEN Lei. 3D Seismic Response Analysis of Double-layer Cylindrical Latticed Shell Considering Soil-structure Interaction [J]. Earthquake Resistant Engineering and Retrofitting, 2013, 35(2): 29 − 34. (in Chinese) doi: 10.3969/j.issn.1002-8412.2013.02.005
    [21]
    于旭, 朱超, 庄海洋, 等. 不同场地多层基础隔震结构振动台试验对比研究[J]. 防灾减灾工程学报, 2016, 36(5): 758 − 765.

    YU Xu, ZHU Chao, ZHUANG Haiyang, et al. Seismic responses of a base isolated multi-story structure with different soil foundations by the shaking table tests [J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(5): 758 − 765. (in Chinese)
    [22]
    李培振, 陈跃庆, 吕西林, 等. 较硬分层土-桩基-结构相互作用体系振动台试验[J]. 同济大学学报(自然科学版), 2006, 34(3): 307 − 313. doi: 10.3321/j.issn:0253-374X.2006.03.005

    LI Peizhen, CHEN Yueqing, LYU Xilin, et al. Shaking table testing of hard layered soil-pile-structure interaction system [J]. Journal of Tongji University(Natural Science), 2006, 34(3): 307 − 313. (in Chinese) doi: 10.3321/j.issn:0253-374X.2006.03.005
    [23]
    ZHUANG H Y, YU X, ZHU C, et al. Shaking table tests for the seismic response of a base-isolated structure with the SSI effect [J]. Soil Dynamics & Earthquake Engineering, 2014, 67: 208 − 218.
    [24]
    蔡晨宁, 杨杰, 陶鹏, 等. 某混凝土连续梁桥动力性能试验研究[J]. 工程抗震与加固改造, 2014, 36(5): 34 − 39. doi: 10.3969/j.issn.1002-8412.2014.05.006

    CAI Chenning, YANG Jie, TAO Peng, et al. Experimental study on dynamic performance of a concrete continuous box girder bridge [J]. Earthquake Resistant Engineering and Retrofitting, 2014, 36(5): 34 − 39. (in Chinese) doi: 10.3969/j.issn.1002-8412.2014.05.006
    [25]
    ALVES S W, HALL J F. System identification of a concrete arch dam and calibration of its finite element model [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(11): 1321 − 1337.
    [26]
    周云, 张军凯, 陈松柏, 等. 大跨度拱桥静动力试验与结构识别的实践[J]. 湖南大学学报(自然科学版), 2017, 44(5): 10 − 19.

    ZHOU Yun, ZHANG Junkai, CHEN Songbai, et al. Practice of Static and Dynamic Experiments and Structural Identification of Long-span Arch Bridges [J]. Journal of Hunan University (Natural Sciences), 2017, 44(5): 10 − 19. (in Chinese)
    [27]
    CASTELLANOS-TORO S, MARMOLEJO M, MARULANDA J, et al. Frequencies and damping ratios of bridges through operational modal analysis using smartphones [J]. Construction and Building Materials, 2018, 188(10): 490 − 504.
    [28]
    荣峰, 刘建伟, 王奎, 等. 基于土-结构相互作用的高层建筑三维地震反应分析[J]. 工程抗震与加固改造, 2011, 33(3): 1 − 6. doi: 10.3969/j.issn.1002-8412.2011.03.001

    RONG Feng, LIU Jianwei, WANG Kui, et al. 3D seismic response of tall building based on soil-structure interaction [J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(3): 1 − 6. (in Chinese) doi: 10.3969/j.issn.1002-8412.2011.03.001
    [29]
    潘旦光, 高莉莉, 靳国豪, 等. 结构-土-结构体系动力特性的模型实验[J]. 北京科技大学学报, 2014, 36(12): 1720 − 1728.

    PAN Danguang, GAO Lili, JIN Guohao, et al. Model test of the dynamic characteristics of a structure-soil-structure system [J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1720 − 1728. (in Chinese)
    [30]
    CHEN Gewei, OMENZETTER P, BESKHYROUN S. Modal systems identification of an eleven-span concrete motorway off-ramp bridge using various excitations [J]. Engineering Structures, 2021, 229: 111604. doi: 10.1016/j.engstruct.2020.111604
    [31]
    刘威, 杨娜, 白凡, 等. 基于敏感性分析的协方差随机子空间方法参数优化[J]. 工程力学, 2021, 38(2): 157 − 178. doi: 10.6052/j.issn.1000-4750.2020.04.0223

    LIU Wei, YANG Na, BAI Fan, et al. Parameter optimization of covariance-driven stochastic subspace identification method based on sensitivity analysis [J]. Engineering Mechanics, 2021, 38(2): 157 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.04.0223
    [32]
    TORRES W, ALMAZÁN J L, SANDOVAL C, et al. Operational modal analysis and FE model updating of the Metropolitan Cathedral of Santiago, Chile [J]. Engineering Structures, 2017, 143(15): 169 − 188.
    [33]
    施袁锋, 朱正言, 陈鹏, 等. 基于EM算法和模态形式的状态空间模型自降阶工作模态分析[J]. 工程力学, 2021, 38(9): 15 − 25. doi: 10.6052/j.issn.1000-4750.2020.08.0618

    SHI Yuanfeng, ZHU Zhengyan, CHEN Peng, et al. Operational modal analysis using EM algorithm and modal-form state-space model with auto model order reduction [J]. Engineering Mechanics, 2021, 38(9): 15 − 25. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0618
    [34]
    JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction [J]. Journal of Guidance, Control and Dynamics, 1985, 8(5): 620 − 627. doi: 10.2514/3.20031
    [35]
    FOSS K A. Coordinates which uncouple the equation of damped linear dynamic system [J]. Journal of Applied Mechanics-ASME, 1958, 25(1): 361 − 364.
    [36]
    李德葆, 陆秋海. 实验模态分析及其应用 [M]. 北京: 科学出版社, 2001.

    LI Debao, LU Qiuhai. Experimental modal analysis and its application [M]. Beijing: China Science Publishing & Media Ltd, 2001. (in Chinese)
    [37]
    HO Β L, KALMAN R E. Effective construction of linear state-variable models from input/output data [C]. Proceedings Third Annual Allerton Conference on Circuit and Systems Theory, 1966.
    [38]
    刘晶波, 谷音, 杜义欣. 一致粘弹性人工边界及粘弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070 − 1075. doi: 10.3321/j.issn:1000-4548.2006.09.004

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070 − 1075. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.004
    [39]
    JIN Aiyun, PAN Jianwen, WANG Jinting, et al. Effect of foundation models on seismic response of arch dams [J]. Engineering Structures, 2019, 188: 578 − 590. doi: 10.1016/j.engstruct.2019.03.048
  • Cited by

    Periodical cited type(1)

    1. 潘旦光,付相球,谭晋鹏,王立军. 土-结构相互作用体系结构动力特性复模态识别法. 建筑结构学报. 2023(07): 196-203 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (316) PDF downloads (53) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return