DOU Chao, XIE Zhi-dong, YANG Na. LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES[J]. Engineering Mechanics, 2022, 39(12): 60-73. DOI: 10.6052/j.issn.1000-4750.2021.06.0459
Citation: DOU Chao, XIE Zhi-dong, YANG Na. LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES[J]. Engineering Mechanics, 2022, 39(12): 60-73. DOI: 10.6052/j.issn.1000-4750.2021.06.0459

LATERAL RESISTANCE AND OPTIMIZED DESIGN OF EMBEDDED PANELS IN FOLDED STEEL PLATE WALLS WITH VERTICAL CONNECTIONS ON BOTH SIDES

More Information
  • Received Date: June 16, 2021
  • Revised Date: October 13, 2021
  • Accepted Date: November 01, 2021
  • Available Online: November 01, 2021
  • This paper deals with the shear resistant behaviour for infill corrugated panels in steel corrugated shear walls connected only to the boundary beams and proposes recommendations for optimal configurations of the infill panels, by using the finite element analyses. The reliability of the finite element model and analysis method is verified by comparing with the previous experimental results. Then two typical lateral resistant mechanisms of 'strong plate' and 'weak plate' for corrugated panels are revealed under monotonic loading, accompanied by the investigation of the effects of key parameters on lateral resistance. It shows that: with the increase of the panel span the proportion of inefficient shear zone decreases and the lateral resistant capacity is increased; the increment of the sub-panel inclined angle and plate thickness can improve the lateral resistance especially the post-buckling load capacity; the formula of optimal corrugation length is developed as other parameters are determined. To decrease the effect of low efficiency shear zone, stiffening members are arranged on the two free sides of the infill panel, and the critical constraint stiffness ratio is suggested to achieve full restraining effect. Stiffeners significantly improve the ultimate resistance and the post-buckling capacity of the infill panel, especially effectively for panels with a small aspect ratio. The hysteretic analysis of infill panels shows that the skeleton curves of 'weak walls' are significantly lower than that under monotonic loading due to the accumulated residual deformation under cyclic loading. In contrast, the out-of-plane deformation of 'strong plate' is always small and the lateral resistance is stable. Based on the hysteretic results of extensive numerical analysis, the optimal configuration of infill corrugated panels is recommended, which provides an important reference for the preliminary design.
  • [1]
    郭彦林, 周明. 钢板剪力墙的分类及性能[J]. 建筑科学与工程学报, 2009, 26(3): 1 − 13. doi: 10.3321/j.issn:1673-2049.2009.03.001

    GUO Yanlin, ZHOU Ming. Categorization and performance of steel plate shear wall [J]. Journal of Architecture and Civil Engineering, 2009, 26(3): 1 − 13. (in Chinese) doi: 10.3321/j.issn:1673-2049.2009.03.001
    [2]
    郭彦林, 朱靖申. 剪力墙的型式、设计理论研究进展[J]. 工程力学, 2020, 37(6): 19 − 33.

    GUO Yanlin, ZHU Jingshen. Research progress of shear walls: types and design methods [J]. Engineering Mechanics, 2020, 37(6): 19 − 33. (in Chinese)
    [3]
    张艳霞, 庞占洋, 武丙龙, 等. 装配式自复位钢框架-开缝钢板剪力墙结构试验研究[J]. 工程力学, 2020, 37(10): 168 − 178. doi: 10.6052/j.issn.1000-4750.2019.11.0701

    ZHANG Yanxia, PANG Zhanyang, WU Binglong, et al. Experimental study on prefabricated self-centering steel frame with slit steel plate shear walls [J]. Engineering Mechanics, 2020, 37(10): 168 − 178. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.11.0701
    [4]
    叶露, 王宇航, 石宇, 等. 冷弯薄壁型钢框架-开缝钢板剪力墙力学性能研究[J]. 工程力学, 2020, 37(11): 156 − 166. doi: 10.6052/j.issn.1000-4750.2020.01.0005

    YE Lu, WANG Yuhang, SHI Yu, et al. Study on the mechanical properties of cold-formed steel framed shear wall with slits [J]. Engineering Mechanics, 2020, 37(11): 156 − 166. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.01.0005
    [5]
    PARK H, KWACK J, JEON S, et al. Framed steel plate wall behavior under cyclic lateral loading [J]. Journal of Structural Engineering, ASCE, 2007, 133(3): 378 − 388. doi: 10.1061/(ASCE)0733-9445(2007)133:3(378)
    [6]
    CHOI I, PARK H. Ductility and energy dissipation capacity of shear-dominated steel plate walls [J]. Journal of Structural Engineering, ASCE, 2008, 134(9): 1495 − 1507. doi: 10.1061/(ASCE)0733-9445(2008)134:9(1495)
    [7]
    CLAYTON P M, BERMAN J W, LOWES L N. Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates [J]. Journal of Constructional Steel Research, 2015, 106: 198 − 208. doi: 10.1016/j.jcsr.2014.12.017
    [8]
    XUE M, LU L W. Interaction of infilled steel shear wall panels with surrounding frame members [R]// Proceedings, 1994 Annual Task Group Technical Session, Structural stability Research Council:reports on current research activities. Bethlehem, Pa, Lehigh University, 1994.
    [9]
    于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98 − 110. doi: 10.6052/j.issn.1000-4750.2019.01.0110

    YU Jinguang, LIU Liming, HAO Jiping. Study on design method of vertical boundary element of partially encased composite frame-steel plate shear walls [J]. Engineering Mechanics, 2020, 37(2): 98 − 110. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0110
    [10]
    牟在根, 杨雨青. 对角槽钢加劲钢板剪力墙抗震性能试验研究[J]. 工程力学, 2021, 38(3): 214 − 227, 238. doi: 10.6052/j.issn.1000-4750.2020.05.0312

    MU Zaigen, YANG Yuqing. Experimental study on seismic behavior of steel plate shear walls with diagonal channel stiffeners [J]. Engineering Mechanics, 2021, 38(3): 214 − 227, 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.0312
    [11]
    EMAMI F, MOFID M, VAFAI A. Experimental study on cyclic behavior of trapezoidal corrugated steel shear walls [J]. Engineering Structures, 2013, 48: 750 − 762. doi: 10.1016/j.engstruct.2012.11.028
    [12]
    EMAMI F, MOFID M. On the hysteretic behavior of trapezoidally corrugated steel shear walls [J]. The Structural Design of Tall and Special Buildings, 2014, 23(2): 94 − 104. doi: 10.1002/tal.1025
    [13]
    KALALI H, HAJSADEGHI M, ZIRAKIAN T, et al. Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates [J]. Steel and Composite Structures, 2015, 19(2): 277 − 292. doi: 10.12989/scs.2015.19.2.277
    [14]
    ZHAO Q, SUN J, LI Y, et al. Cyclic analyses of corrugated steel plate shear walls [J]. The Structural Design of Tall and Special Buildings, 2017, 26(16): 1 − 17.
    [15]
    QIU J, ZHAO Q H, YU C, et al. Experimental studies on cyclic behaviour of corrugated steel plate shear walls [J]. Journal of Structural Engineering, ASCE, 2018, 144(11): 04018200. doi: 10.1061/(ASCE)ST.1943-541X.0002165
    [16]
    DOU C, PI Y, GAO W. Shear resistance and post-buckling behavior of corrugated panels in steel plate shear walls [J]. Thin-Walled Structures, 2018, 131: 816 − 826. doi: 10.1016/j.tws.2018.07.039
    [17]
    TONG J Z, GUO Y L. Shear resistance of stiffened steel corrugated shear walls [J]. Thin-Walled Structures, 2018, 127: 76 − 89. doi: 10.1016/j.tws.2018.01.036
    [18]
    TONG J Z, GUO Y L. Ultimate shear resistance and post-ultimate behaviour of double-corrugated-plate shear walls [J]. Journal of Constructional Steel Research, 2020, 165: 1 − 14.
    [19]
    FENG L F, SUN T S, OU J P. Elastic buckling analysis of steel-strip-stiffened trapezoidal corrugated steel plate shear walls [J]. Journal of Constructional Steel Research, 2021, 184: 106833. doi: 10.1016/j.jcsr.2021.106833
    [20]
    ROUDSARI S S, SOLEIMANI S M, HAMOUSH S A. Analytical study of the effects of opening characteristics and plate thickness on the performance of sinusoidal and trapezoidal corrugated steel plate shear walls [J]. Journal of Constructional Steel Research, 2021, 182: 106660. doi: 10.1016/j.jcsr.2021.106660
    [21]
    王威, 刘格炜, 苏三庆, 等. 波形钢板剪力墙及组合墙抗剪承载力研究[J]. 工程力学, 2019, 36(7): 197 − 206, 226. doi: 10.6052/j.issn.1000-4750.2018.06.0356

    WANG Wei, LIU Gewei, SU Sanqing, et al. Research on the shear bearing capacity of corrugated steel plate shear wall and composite wall [J]. Engineering Mechanics, 2019, 36(7): 197 − 206, 226. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.06.0356
    [22]
    DENG E F, ZONG L, WANG H P, et al. High efficiency analysis model for corrugated steel plate shear walls in modular steel construction [J]. Thin–Walled Structures, 2020, 156: 106963.
    [23]
    BROUJERDIAN V, GHAMARI A, ABBASZADEH A. Introducing an efficient compound section for steel shear wall using flat and corrugated plates [J]. Structures, 2021, 33: 2855 − 2871. doi: 10.1016/j.istruc.2021.06.027
    [24]
    魏瑶, 谭平, 李洋, 等. 侧边加劲波纹钢板墙弹性剪切屈曲分析[J]. 地震工程与工程振动, 2015, 35(3): 199 − 209.

    WEI Yao, TAN Ping, LI Yang, et al. Elastic shear buckling analysis of corrugated steel plate wall with edge stiffeners [J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 199 − 209. (in Chinese)
    [25]
    赵秋红, 邱静, 郝博超, 等. 两边连接竖向波纹钢板剪力墙的抗侧性能[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊 2): 46 − 53.

    ZHAO Qiuhong, QIU Jing, HAO Bochao, et al. Lateral behavior of vertically-corrugated steel plate shear walls connected with beams only [J]. Journal of Tianjin University (Science and Technology), 2019, 52(Suppl 2): 46 − 53. (in Chinese)
    [26]
    FANG J P, BAO W, REN F M, et al. Experimental study of hysteretic behavior of semi-rigid frame with a corrugated plate [J]. Journal of Constructional Steel Research, 2020, 174: 106289. doi: 10.1016/j.jcsr.2020.106289
    [27]
    DOU C, XIE C, ZHAO Y Y, et al. Shear resistance and design of infill panels in corrugated plate shear walls [J]. Journal of Structural Engineering, ASCE, 2021, 147(11): 04021179-1 − 04021179-13. doi: 10.1061/(ASCE)ST.1943-541X.0003162
    [28]
    郝博超. 开洞竖向波纹钢板剪力墙抗震性能试验与受力机理研究[D]. 天津: 天津大学, 2018.

    HAO Bochao. Cyclic test and mechanism of vertically corrugated steel plate shear walls with various openings [D]. Tianjin: Tianjin University, 2018. (in Chinese)
    [29]
    GB 50368−2005, 住宅建筑规范[S]. 北京: 中国建筑工业出版社, 2005.

    GB 50368−2005, Residential building code [S]. Beijing: China Architecture & Building Press, 2005. (in Chinese)
    [30]
    JGJ 36−2016, 宿舍建筑设计规范[S]. 北京: 中国建筑工业出版社, 2016.

    JGJ 36−2016, Code for design of dormitory building [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
    [31]
    JGJ/T 67−2019, 办公建筑设计规范[S]. 北京: 中国建筑工业出版社, 2019.

    JGJ/T 67−2019, Standard for design of office building [S]. Beijing: China Architecture & Building Press, 2016. (in Chinese)
  • Cited by

    Periodical cited type(2)

    1. 李建国,张永生. 建筑用压型钢板外墙的力学性能研究. 兵器材料科学与工程. 2025(03): 86-91 .
    2. 窦超,杨潇,解程,杨娜. 平—波折钢板剪力墙往复加载试验及抗侧性能分析. 工程力学. 2024(08): 164-175 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (361) PDF downloads (44) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return